

Audit Report
Mage Labs
June 2025

Repository https://github.com/qu0laz/magelabs-staking

Commit 3cfb6eeb656bfefc7d21b876f48dc3b5100ffaf3

Audited by © cyberscope

https://github.com/qu0laz/magelabs-staking

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 1

Table of Contents
Table of Contents​ 1
Risk Classification​ 4
Review​ 5

Audit Updates​ 5
Source Files​ 5

Overview​ 8
Admin Functionality​ 8
Stake​ 8
Increase Stake​ 9
Claim Reward Tokens​ 9
Mint, Burn, and Redeem​ 9
Stake NFT​ 9
Unstake​ 10
Withdraw​ 10
Reward Distribution Mechanism​ 10

Contract Readability Comment​ 11
Findings Breakdown​ 12
Diagnostics​ 13

MRTU - Misaligned Reward Token Usage​ 16
Description​ 16
Recommendation​ 17

MAC - Missing Access Control​ 18
Description​ 18
Recommendation​ 18

MRAV - Missing Reward Account Validations​ 19
Description​ 19
Recommendation​ 20

MRU - Missing Reward Update​ 21
Description​ 21
Recommendation​ 24

MSTRP - Missing Synthetic Token Redemption Path​ 25
Description​ 25
Recommendation​ 25

SRRC - Stale Reward Rate Calculation​ 26
Description​ 26
Recommendation​ 26

UCT - Uninitialized Cooldown Time​ 27
Description​ 27
Recommendation​ 27

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 2

INV - Incomplete NFT Validation​ 28
Description​ 28
Recommendation​ 29

ISSV - Insufficient Stake State Validation​ 30
Description​ 30
Recommendation​ 31

MCVL - Missing Custom Validation Logic​ 32
Description​ 32
Recommendation​ 33

MOTV - Missing Owner Token Validation​ 34
Description​ 34
Recommendation​ 34

MSOC - Missing Source Ownership Check​ 35
Description​ 35
Recommendation​ 36

MUCE - Missing Unstake Cooldown Enforcement​ 37
Description​ 37
Recommendation​ 37

UNWR - Uniform NFT Weighting Risk​ 38
Description​ 38
Recommendation​ 39

MRPV - Missing Reward Pool Validation​ 40
Description​ 40
Recommendation​ 40

CCR - Contract Centralization Risk​ 41
Description​ 41
Recommendation​ 42

ISU - Inconsistent Signer Usage​ 43
Description​ 43
Recommendation​ 43

IRPI - Insecure Reward Pool Input​ 44
Description​ 44
Recommendation​ 44

MEE - Missing Events Emission​ 45
Description​ 45
Recommendation​ 45

MIC - Missing Input Checks​ 46
Description​ 46
Recommendation​ 47

MVMV - Missing Vault Mint Verification​ 48
Description​ 48
Recommendation​ 48

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 3

MZAC - Missing Zero Amount Check​ 49
Description​ 49
Recommendation​ 49

NANV - NFT Amount Not Verified​ 50
Description​ 50
Recommendation​ 50

POAO - Panic on Arithmetic Overflow​ 52
Description​ 52
Recommendation​ 53

PTAI - Potential Transfer Amount Inconsistency​ 54
Description​ 54
Recommendation​ 55

RSSC - Redundant Stake State Checks​ 56
Description​ 56
Recommendation​ 56

TSI - Tokens Sufficiency Insurance​ 57
Description​ 57
Recommendation​ 57

UVP - Unchecked Vault Parameters​ 58
Description​ 58
Recommendation​ 58

USU - Unnecessary Struct Usage​ 59
Description​ 59
Recommendation​ 59

UAI - Unvalidated Authority Input​ 60
Description​ 60
Recommendation​ 61

Summary​ 62
Disclaimer​ 63
About Cyberscope​ 64

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 4

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1.​ Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2.​ Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1.​ Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2.​ Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3.​ Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4.​ Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 5

Review

Repository https://github.com/qu0laz/magelabs-staking

Commit 3cfb6eeb656bfefc7d21b876f48dc3b5100ffaf3

Audit Updates

Initial Audit 11 Jun 2025

Source Files

Filename SHA256

./errors.rs 6beebb9cd2c1b0ad6acec2df0fd4da780ebc6b4c

a953bd9dc9f9947cbe1530a5

./state/stake_receipt.rs caf6a2563287ca82642c73bccdcb1031dea58315

7887400116c3298f68d9e684

./state/mod.rs 27f6ec65b6423d551ddb8c92ef4b2cbc738bbee2

85be02949c4149c3f36b5e09

./state/stake_pool.rs 2dcebd790a8044cf5f81a2dac0df76b0f241a94a9

d9c906d16310d4443caadad

./instructions/claim_reward_tokens.rs edd3f99d22a393bf9c9ffb296aae899560186426ff

c621d77a119a2377b3ebca

./instructions/unstake.rs 7e63798be5b9975ae521c27dac1981b12ae827f3

9c84c567b3e599b626a90688

./instructions/stake.rs f1ca1bc956d5a2ab1f52ed26d911a3702ff7df1e2a

48647d3adb8ed6a19298af

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 6

./instructions/mod.rs e569b8b8b92046acfc2d8c7ae6ef3ab5ef038ad33

0b1c5e574976a3dfcd15d6c

./instructions/stake_nft.rs 6fca6bf20e25d3b14df92019c0314c001cd5d9ada

317cdc5bf261a364c1b9086

./instructions/withdraw.rs 12995d7186905a8a48e54f70cbbe2dd7f83287f19

9c7e9c2fd087e3b43b6a214

./instructions/admin/update_authority.rs bdf60b96dd939e4921a61ef8593b8dfa6d491c3d4

c5484c02c1fef294935c213

./instructions/admin/add_token.rs 648f615982999d9634f3e448d3544dbb35bc04f8a

2dbf8d2cb59cf3ee7a338d8

./instructions/admin/mod.rs fe84eff17640e1fb35cb7a753f8818fb2d4648e013e

119bff48c8a0beb8b2449

./instructions/admin/create_stake_pool.rs 3eba01b2e13396c7a2db1f0dee69ee768188f938c

d4c1a7d2c1306709faa953c

./instructions/admin/add_nft.rs aaf54106309a0c9ccb370ee71c787cc4547fdde9c

4764d9dafe14061430ef741

./instructions/admin/add_reward_pool.rs d1d49c4e451026741910429e33d4ee07db0a809c

94c914e90aefc3f0b5ecf5f4

./instructions/increase_stake.rs df23d77a365f97e3e0222a110800f0bae8f08d5e38

6c7f278f95a66dea93413b

./instructions/mint_burn_redeem.rs 7e9b09de769c1414a68e641b1ca976d40a22daf3

9ff70c0ba5f72e4063c43598

./lib.rs d9fb80e41046861f2ebc6a5bebb7a5097bf1f268fc

5d23c58fae15495805cfc3

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 7

./uint.rs 1d842809e43e1ee702390e311492eaef864c8ced

7711e81fe31e76c239b70a25

./macros.rs c7e386afda5354bfa4fa90a15fa4e2841bc216c092

94810ded3324fd2015a1ab

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 8

Overview
The Mage contracts implement a modular and extensible staking system that supports both

fungible tokens and NFTs, allowing users to stake assets in exchange for proportional

reward distributions. At its core, the system revolves around the StakePool account,

which maintains authority, tracks custom asset weights, and manages multiple

RewardPools . Administrators can initialize stake pools, add supported tokens or NFT

collections with specific weights, assign reward mints, and update pool authorities. The

reward mechanism ensures that rewards are distributed fairly based on weighted stake

contributions, with accounting tokens optionally redeemable for actual reward tokens. The

design promotes flexibility, precise reward allocation, and composability with various asset

types while enforcing access control and account validation throughout the lifecycle of

staking and reward operations.

Admin Functionality

The admin functionality of the protocol enables privileged users to configure and manage

the StakePool through a set of permissioned instructions. Using CreateStakePool

, an admin initializes a new pool instance with an assigned authority. The AddToken and

AddNft instructions allow the admin to register new stakeable assets—either fungible

tokens with associated vaults or NFT collections verified through Metaplex metadata—each

with custom weight parameters influencing stake distribution. Through AddRewardPool

, the admin defines reward configurations by linking real and synthetic reward mints with

vaults and setting mint authorities. Finally, UpdateAuthority allows for the transfer of

administrative control by updating the StakePool 's authority key, ensuring flexible and

secure protocol governance. All critical operations are gated by signer-based authority

checks and account constraints to ensure only authorized entities can modify pool state.

Stake

Users can stake fungible tokens into the protocol by transferring assets from their wallet

into a designated vault managed by the StakePool . Upon staking, a StakeReceipt

is generated, recording the user's effective stake based on asset weighting, the original

deposit amount, and a snapshot of current reward accumulators. This receipt enables

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 9

future reward claims and governs unstaking eligibility. The protocol also recalculates global

rewards upon new deposits to ensure accurate distribution.

Increase Stake

The IncreaseStake instruction allows users to add more tokens to an existing stake

position. Before increasing their stake, users automatically claim and redeem their

accumulated rewards. The additional deposit is converted into an updated effective stake,

increasing both the user's and the pool’s total weighted stake. The process ensures

rewards are settled accurately and state remains consistent before stake growth.

Claim Reward Tokens

This function lets users claim synthetic reward tokens that reflect their share of rewards

accumulated over time. The protocol recalculates reward rates based on vault balances and

user stake before minting the appropriate amount of synthetic tokens. These synthetic

tokens represent a user’s reward entitlement and can be tracked or redeemed in a later

step.

Mint, Burn, and Redeem

This flow enables users to convert synthetic reward tokens into real reward tokens. The

contract mints synthetic rewards, burns them from the user’s account, and transfers an

equivalent amount of real tokens from the reward vault. This two-step process preserves

accounting integrity while ensuring users receive actual value from their earned rewards.

Stake NFT

The StakeNft instruction allows users to stake NFTs that belong to verified collections.

The contract validates the NFT’s metadata and ensures it’s part of an approved collection.

Upon staking, the NFT is transferred to a vault controlled by the StakePool , and a

StakeReceipt is issued to track the user's contribution. The effective stake is computed

based on the NFT asset’s weight, and rewards begin accruing accordingly. The user’s

source token account is closed to reclaim rent once the NFT is secured in the vault.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 10

Unstake

Users initiate the unstaking process using the Unstake instruction, which applies to

both fungible token and NFT stakes. This operation ensures rewards are up to date by

recalculating the pool’s reward distribution and minting any outstanding rewards. It then

decreases the total weighted stake and updates the user's withdrawable_at

timestamp, enforcing a cooldown period before the actual withdrawal is allowed. This

preserves fair reward distribution and prevents immediate stake-exit abuse.

Withdraw

Once the cooldown period ends, users can execute the Withdraw instruction to retrieve

their staked tokens or NFTs. The contract validates the stake receipt and, if the asset is an

NFT, verifies its metadata again. The staked asset is transferred from the protocol vault

back to the user’s wallet. If the withdrawn asset is an NFT, the associated vault is closed to

clean up and reclaim rent. This instruction finalizes the full lifecycle of a stake and ensures

secure asset return to the rightful owner.

Here is a clear and concise paragraph describing how rewards are applied in this system:

Reward Distribution Mechanism

The reward system distributes tokens to stakers proportionally based on their effective

stake, which accounts for the weight of the staked asset. When tokens are deposited into a

reward vault, the recalculate_rewards_per_effective_stake function updates

each RewardPool 's rewards_per_effective_stake accumulator by computing

the difference between the current and previous vault balances. This value is scaled and

divided by the total_weighted_stake to ensure fair allocation. During withdrawal or

unstaking, the user's share of rewards is calculated by multiplying the difference in

reward-per-stake with their effective stake, then minting accounting reward tokens. If

burn_and_redeem is enabled, those tokens are burned and equivalent actual rewards

are transferred from the vault. This mechanism ensures precision, fairness, and

compatibility with both fungible and NFT-based staking assets.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 11

Contract Readability Comment

The audit aimed to assess the contracts for security, correctness, and overall code quality.

While the project introduces a functional staking and reward mechanism, the current

implementation lacks the robustness and clarity expected from production-grade Solana

programs. The codebase shows signs of incomplete logic, insufficient validation, and

structural weaknesses that impact both security and maintainability. Overall, the contracts

require significant refactoring to meet Solana and Rust best practices. In their current state,

the contracts are not considered production-ready, and we recommend a thorough review

and rework before deployment.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 12

Findings Breakdown

⬤ Critical 7

⬤ Medium 7

⬤ Minor / Informative 16

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 7 0 0 0

⬤ Medium 7 0 0 0

⬤ Minor / Informative 16 0 0 0

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 13

Diagnostics

 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ MRTU Misaligned Reward Token Usage Unresolved

⬤ MAC Missing Access Control Unresolved

⬤ MRAV Missing Reward Account Validations Unresolved

⬤ MRU Missing Reward Update Unresolved

⬤ MSTRP Missing Synthetic Token Redemption Path Unresolved

⬤ SRRC Stale Reward Rate Calculation Unresolved

⬤ UCT Uninitialized Cooldown Time Unresolved

⬤ INV Incomplete NFT Validation Unresolved

⬤ ISSV Insufficient Stake State Validation Unresolved

⬤ MCVL Missing Custom Validation Logic Unresolved

⬤ MOTV Missing Owner Token Validation Unresolved

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 14

⬤ MSOC Missing Source Ownership Check Unresolved

⬤ MUCE Missing Unstake Cooldown Enforcement Unresolved

⬤ UNWR Uniform NFT Weighting Risk Unresolved

⬤ MRPV Missing Reward Pool Validation Unresolved

⬤ CCR Contract Centralization Risk Unresolved

⬤ ISU Inconsistent Signer Usage Unresolved

⬤ IRPI Insecure Reward Pool Input Unresolved

⬤ MEE Missing Events Emission Unresolved

⬤ MIC Missing Input Checks Unresolved

⬤ MVMV Missing Vault Mint Verification Unresolved

⬤ MZAC Missing Zero Amount Check Unresolved

⬤ NANV NFT Amount Not Verified Unresolved

⬤ POAO Panic on Arithmetic Overflow Unresolved

⬤ PTAI Potential Transfer Amount Inconsistency Unresolved

⬤ RSSC Redundant Stake State Checks Unresolved

⬤ TSI Tokens Sufficiency Insurance Unresolved

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 15

⬤ UVP Unchecked Vault Parameters Unresolved

⬤ USU Unnecessary Struct Usage Unresolved

⬤ UAI Unvalidated Authority Input Unresolved

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 16

MRTU - Misaligned Reward Token Usage

Criticality Critical

Location add_reward_pool.rs#49

Status Unresolved

Description

The contract performs validation and authority logic on the reward_mint account,

which is expected to represent the actual tokens distributed to users as rewards. However,

the implementation inconsistently applies mint authority changes and token issuance logic

to the accounting_reward_mint instead, which is used solely for synthetic

accounting and not for actual token transfers. This creates a critical misunderstanding of

the protocol’s mechanics. While reward_mint appears to be the source of real

rewards, the contract neither mints from it nor updates it during reward distribution. Instead,

all minting logic is directed at accounting_reward_mint , which contradicts its

intended purpose and introduces significant confusion. As a result, the code currently

validates the supply and freeze authority of reward_mint , while setting authority and

minting operations on accounting_reward_mint , creating an inconsistency that

undermines the intended token distribution flow and misleads developers and integrators

regarding which mint governs the actual reward logic.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 17

impl<'info> AddRewardPool<'info> {
 pub fn validate(ctx: &Context<AddRewardPool>) -> Result<()> {
 // Cannot have freeze authority set
 if ctx.accounts.reward_mint.freeze_authority.is_some() {
 return Err(ErrorCode::FreezeAuthorityMustBeNone.into());
 }

 // Reward mint must have initial supply of 0
 if ctx.accounts.reward_mint.supply > 0 {
 return Err(ErrorCode::InvalidMintSupply.into());
 }
 Ok(())
 }
}

pub fn handler(ctx: Context<AddRewardPool>) -> Result<()> {
 // Update the reward mint's mint authority to the StakePool
 if ctx.accounts.reward_mint.mint_authority !=
COption::Some(ctx.accounts.stake_pool.key()) {
 let cpi_ctx = CpiContext::new(
 ctx.accounts.token_program.to_account_info(),
 SetAuthority {
 current_authority: ctx
 .accounts
 .accounting_reward_mint_authority
 .to_account_info(),
 account_or_mint:
ctx.accounts.accounting_reward_mint.to_account_info(),
 },
);
 set_authority(
 cpi_ctx,
 AuthorityType::MintTokens,
 Some(ctx.accounts.stake_pool.key()),
)?;
 }

Recommendation

It is recommended to align all validation and authority-setting logic with the actual mint

used for tracking and distributing rewards. Specifically, if accounting_reward_mint

is used to mint and manage reward balances, then all checks (such as supply, authority,

and freeze restrictions) should be applied to that mint instead of reward_mint .

Additionally, documentation and variable naming should clearly distinguish between

synthetic and real reward mints to avoid protocol misuse or security misunderstandings.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 18

MAC - Missing Access Control

Criticality Critical

Location create_stake_pool.rs#30

Status Unresolved

Description

The contract is missing custom validation logic within the validate function of the

CreateStakePool instruction context. As currently implemented, the function simply

returns Ok(()) without performing any checks, such as verifying that the caller is an

authorised admin or ensuring that critical input parameters (e.g., authority) are valid.

This absence of validation allows any signer to initialise a new stake pool, which could lead

to unauthorised or malicious pool creation, undermining the intended trust or control model

of the protocol.

 pub fn validate(_ctx: &Context<CreateStakePool>) ->
Result<()> {
 Ok(())
 }

Recommendation

It is recommended to implement explicit access control checks within the validate

function. For example, ensure that the transaction signer matches a predefined admin

address or is otherwise authorised to initialise a stake pool. Additional validation logic

should also be added to confirm that key input parameters are valid and not set to default

or zero values.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 19

MRAV - Missing Reward Account Validations

Criticality Critical

Location stake_pool.rs#331

Status Unresolved

Description

The mint_accounting_reward_tokens function lacks critical runtime checks for

several user-supplied accounts, leaving the reward distribution mechanism vulnerable to

misdirection or spoofing:

1.​ Accounting Mint Mismatch: The accounting_reward_mint_info account is

not validated to match the reward_pool.accounting_reward_mint .

Without this, attackers could mint synthetic reward tokens to an arbitrary mint.

2.​ Recipient Account Mismatch: The owner_accounting_reward_token_info

is not checked for correct ownership (owner.key()) or mint consistency (==

accounting_reward_mint_info.key()), allowing unauthorized recipients or

incorrect token types.

3.​ Burn-and-Redeem Destination Mismatch: In the burn_and_redeem branch, the

destination SPL token account (user_reward_token) is not validated to belong

to the caller or match the real reward_pool.reward_mint . This opens the

door to redirection of real rewards.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 20

pub fn mint_accounting_reward_tokens<'info>(
 ...
 let reward_vault_info =
&remaining_accounts[remaining_accounts_index];
 let accounting_reward_mint_info =
&remaining_accounts[remaining_accounts_index + 1];
 let owner_accounting_reward_token_info =
 &remaining_accounts[remaining_accounts_index + 2];
 ...
 token::mint_to(cpi_ctx, total_claimable)?;
 if burn_and_redeem {
 ...
 let user_reward_token =
&remaining_accounts[remaining_accounts_index + 3];
 ...
 }
 remaining_accounts_index += page_size;
...
}

Recommendation

It is recommended to add the following validations:

●​ require!(accounting_reward_mint_info.key() ==

reward_pool.accounting_reward_mint, ...)

●​ require!(owner_accounting_reward_token_info.mint ==

accounting_reward_mint_info.key(), ...)

●​ require!(owner_accounting_reward_token_info.owner ==

owner.key(), ...)

●​ require!(user_reward_token.owner == owner.key(), ...)

●​ require!(user_reward_token.mint == reward_pool.reward_mint,

...)

These checks are necessary to enforce correct and secure reward delivery, prevent

misdirection of tokens, and preserve the integrity of both synthetic and real reward flows.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 21

MRU - Missing Reward Update

Criticality Critical

Location stake.rs#102
unstake.rs#60
stake_pool.rs#292

Status Unresolved

Description

The contract is designed to distribute rewards proportionally based on the difference

between the current rewards_per_effective_stake and the user's stored

claimed_amounts recorded at the time of staking. However, this mechanism critically

depends on the admin manually transferring reward tokens into the reward_vault . If

no transfer occurs between the time a user stakes and later attempts to redeem, the

rewards_per_effective_stake remains unchanged. As a result, the difference

between the updated value and the stored claimed_amounts will be zero, and the user

will receive no rewards—even if they have been staked for a long period.

This behaviour creates a misleading incentive structure where users expect proportional

rewards over time but are entirely dependent on external admin intervention to trigger the

accrual logic. The absence of automatic reward accrual or real-time recalculation at

stake/unstake time makes the reward system unreliable and potentially unfair to

participants.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 22

 stake_receipt.owner = ctx.accounts.owner.key();
 stake_receipt.deposit_timestamp = clock.unix_timestamp;
 stake_receipt.claimed_amounts =
stake_pool.get_claimed_amounts_of_reward_pools();
 stake_receipt.effective_stake = effective_stake;
 stake_receipt.mint = ctx.accounts.source.mint;
 stake_receipt.native_amount = args.amount;
 stake_receipt.stake_pool = stake_pool.key();
 stake_receipt.vault = ctx.accounts.vault.key();
 stake_receipt.withdrawable_at = 0;

...
 ctx.accounts.stake_pool.mint_accounting_reward_tokens(
 ctx.accounts.owner.to_account_info(),
 ctx.accounts.stake_pool.to_account_info(),
 ctx.accounts.token_program.to_account_info(),
 &ctx.accounts.stake_receipt,
 &ctx.remaining_accounts,
 Unstake::REMAINING_ACCOUNT_PAGE_SIZE,
 true,
)?;

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 23

 pub fn mint_accounting_reward_tokens<'info>(
 &self,
 owner: AccountInfo<'info>,
 stake_pool_account: AccountInfo<'info>,
 token_program_info: AccountInfo<'info>,
 stake_receipt: &StakeReceipt,
 remaining_accounts: &[AccountInfo<'info>],
 page_size: usize,
 burn_and_redeem: bool,
) -> Result<()> {
 let mut remaining_accounts_index: usize = 0;
 for (index, reward_pool) in self.reward_pools.iter().enumerate()
{
 if reward_pool.is_empty() {
 continue;
 }
 // Calculate the amount of reward tokens the user should get.
 let claimable_per_effective_stake = reward_pool
 .rewards_per_effective_stake
 .as_u128()

.checked_sub(stake_receipt.claimed_amounts[index].as_u128())
 .unwrap();
 // Note: Cannot overflow, 2^128 * 2^128 < 2^256
 let total_claimable =
U256::from(claimable_per_effective_stake)

.checked_mul(U256::from(stake_receipt.effective_stake.as_u128()))
 .unwrap()
 .checked_div(U256::from(SCALE_FACTOR_BASE))
 .unwrap()
 .as_u64();
 msg!(
 "CLAIMABLE {:?} | {:?} | {}",
 claimable_per_effective_stake,
 stake_receipt.effective_stake,
 total_claimable
);
 if total_claimable == 0 {
 remaining_accounts_index += 1;
 continue;
 }

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 24

Recommendation

It is recommended to ensure that reward rates (rewards_per_effective_stake) are

updated dynamically and proportionally to the user's effective stake each time a user stakes

or unstakes. This approach, as outlined in the SRRC - Stale Reward Rate

Calculation finding, would decouple reward distribution from admin funding and make

the staking experience more transparent, accurate, and production-safe.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 25

MSTRP - Missing Synthetic Token Redemption Path

Criticality Critical

Location claim_reward_tokens.rs#50

Status Unresolved

Description

The contract mints synthetic accounting tokens (used for tracking rewards) to users during

reward claims but lacks a redemption mechanism that allows users to convert or burn these

tokens in exchange for the actual underlying reward tokens. As a result, these synthetic

tokens accumulate in user accounts without a way to redeem them for value. Additionally,

the mint_burn logic only handles deltas during reward distribution, not full redemption,

further reinforcing the lack of an exit path. This design creates a misleading impression that

users have received rewards when, in reality, they hold non-redeemable synthetic balances.

// For each reward_pol, mint the reward tokens
 ctx.accounts.stake_pool.mint_accounting_reward_tokens(
 ctx.accounts.owner.to_account_info(),
 ctx.accounts.stake_pool.to_account_info(),
 ctx.accounts.token_program.to_account_info(),
 &ctx.accounts.stake_receipt,
 &ctx.remaining_accounts,
 ClaimRewardTokens::REMAINING_ACCOUNT_PAGE_SIZE,
 false,
)?;

Recommendation

It is recommended to implement a clear and verifiable redemption mechanism that allows

users to convert their synthetic reward tokens into real rewards. This should include explicit

burn logic tied to minting of real reward tokens, along with proper accounting and validation

to prevent abuse. Without such a mechanism, the synthetic rewards model remains

incomplete and may confuse users or lead to loss of expected value.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 26

SRRC - Stale Reward Rate Calculation

Criticality Critical

Location stake_pool.rs#233

Status Unresolved

Description

The contract updates the rewards_per_effective_stake value only when a

change in the token vault's balance is detected (i.e., when tokens are transferred into the

reward vault). This logic assumes that rewards are only affected by vault balance updates,

but it fails to account for staking-related changes in the pool's total_weighted_stake

. As a result, if new users stake after reward tokens have been deposited but before

recalculate_rewards_per_effective_stake is triggered again, they may receive

an unfair share of rewards calculated at a stale rate. This undermines reward fairness and

introduces opportunities for manipulation.

if reward_pool.last_amount == token_account.amount {
 // no change in token account balance, can skip update
 continue;
}

Recommendation

It is recommended to trigger recalculate_rewards_per_effective_stake on

every deposit, withdrawal, and claim, regardless of whether the reward vault balance has

changed. Additionally, avoid relying solely on balance deltas to update the reward rate.

Incorporating internal accounting events ensures timely and accurate reward distribution

aligned with protocol state changes.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 27

UCT - Uninitialized Cooldown Time

Criticality Critical

Location unstake.rs#82

Status Unresolved

Description

The contract uses unstake_cooldown_time from the stake_pool account to

calculate when a user’s stake becomes withdrawable. However, there is no enforcement or

guarantee that unstake_cooldown_time has been initialized to a valid value prior to

this calculation. Since this field is left unset and defaulted to zero, the cooldown mechanism

becomes ineffective, allowing users to bypass the intended delay before withdrawal. This

undermines the staking logic and could enable reward abuse or premature exits from the

pool.

.unwrap()

.checked_add(ctx.accounts.stake_pool.unstake_cooldown_time)

.ok_or(ErrorCode::ArithmeticError)?;

Recommendation

It is recommended to enforce that unstake_cooldown_time is explicitly initialized

during stake pool setup and validated before use. This can be done by adding runtime

checks to ensure it is greater than zero, and by enforcing proper configuration during pool

creation or updates. This guarantees that withdrawal timing works as intended and that

cooldown logic is not silently bypassed.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 28

INV - Incomplete NFT Validation

Criticality Medium

Location add_nft.rs#29

Status Unresolved

Description

The validate function within the AddNft instruction performs basic checks for PDA

correctness and Metaplex ownership but omits several critical validations specific to NFTs.

Notably, it does not verify whether the NFT collection is verified, despite such a check being

enforced elsewhere in the codebase (e.g., stake_nft). Additionally, it does not confirm

that the mint being added represents a collection by checking

metadata.collection_details.is_some() . Lastly, the function fails to validate

that the mint has zero decimals—an essential property for distinguishing NFTs from fungible

tokens. These gaps can lead to unauthorised or invalid NFT assets being added to the pool,

undermining reward logic and pool integrity.

impl<'info> AddNft<'info> {
 pub fn validate(ctx: &Context<AddNft>, _args: &AddNftArgs) ->
Result<()> {
 // Validate: Metadata must be owned by Metaplex metadata program
 if ctx.accounts.metadata.owner != &mpl_token_metadata::ID {
 return Err(ErrorCode::InvalidNftMetadata.into());
 }
 // Validate: PDA must match
 let (metadata_pda, _bump) =
Metadata::find_pda(&ctx.accounts.mint.key());
 if ctx.accounts.metadata.key() != metadata_pda {
 return Err(ErrorCode::InvalidNftMetadata.into());
 }

 Ok(())
 }
}

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 29

Recommendation

It is recommended to enhance the validate function to include the following checks:

●​ Ensure that the NFT's collection is verified (metadata.collection exists and

verified == true).

●​ Confirm the mint represents a collection (collection_details.is_some()).

●​ Validate that the mint has 0 decimals to guarantee it is a true NFT. These additional

validations are necessary to maintain consistency across the contract, enforce

proper NFT structure, and mitigate risks from misconfigured or malicious assets.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 30

ISSV - Insufficient Stake State Validation

Criticality Medium

Location increase_stake.rs#39
mint_burn_redeem.rs#29
unstake.rs#

Status Unresolved

Description

Multiple contract instructions rely on internal helper methods (e.g., can_claim_rewards

, can_unstake) to infer that a user has an active or valid stake. However, these checks

do not explicitly validate that staking has actually occurred, and the appropriate checks are

only handled by the constraints (e.g., has_one). Relying solely on structural constraints

can lead to false assumptions about a user's eligibility to perform actions like increasing

stake or claiming rewards and make the usage of internal functions redundant. This may

cause transactions to revert unexpectedly or behave inconsistently across different contract

modules.

 #[account(
 mut,
 has_one = owner,
 has_one = stake_pool,
 has_one = vault,
)]
 pub stake_receipt: Account<'info, StakeReceipt>,

 ...
}

impl<'info> IncreaseStake<'info> {
 const REMAINING_ACCOUNT_PAGE_SIZE: usize = 4;

 pub fn validate(ctx: &Context<IncreaseStake>) -> Result<()>
{
 require!(
 ctx.accounts.stake_receipt.can_claim_rewards(),
 ErrorCode::CantClaimRewards
);
 Ok(())
 }

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 31

 pub fn validate(ctx: &Context<Unstake>) -> Result<()> {
 // Valdiate the StakeReceipt isn't already unstaking
 require!(
 ctx.accounts.stake_receipt.can_unstake(),
 ErrorCode::CantUnstakeAgain
);
 Ok(())
 }
}

Recommendation

It is recommended to implement explicit runtime checks that verify the actual stake

state—such as ensuring the staked amount is non-zero, a status flag is set, or the account

has been properly initialized through a staking entry point. Avoid depending solely on

inferred checks or account relationships, as they may not reliably reflect true staking

activity. Consistent and direct validation improves correctness, user experience, and

protocol security.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 32

MCVL - Missing Custom Validation Logic

Criticality Medium

Location add_token.rs#42

Status Unresolved

Description

Multiple contracts define a validate function for multiple instruction contexts but fail to

implement any actual validation logic within them. These functions return Ok(())

unconditionally, relying solely on attribute-based constraints (such as has_one =

authority) for enforcing correctness. While these constraints are useful, they do not

replace the need for contextual or business-specific validation—such as checking for

duplicate resources, verifying configuration bounds, or restricting repeated or unauthorized

actions. As a result, the validate functions across the codebase are effectively

redundant and do not enhance contract security or correctness.

#[account(
 mut,
 seeds = [&stake_pool.base.as_ref()],
 bump,
 has_one = authority @ ErrorCode::InvalidAuthority,
)]
 ...

impl<'info> AddToken<'info> {
 pub fn validate(_ctx: &Context<AddToken>, _args: &AddTokenArgs) ->
Result<()> {
 Ok(())
 }
}

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 33

Recommendation

It is recommended to review and implement meaningful custom validation logic within each

validate function to enforce business rules and invariants that cannot be expressed

through attribute macros alone. If no additional logic is required, consider removing these

empty functions to reduce confusion and maintain code clarity. Consistent and purposeful

use of validation functions improves contract robustness and helps prevent subtle

misbehaviours.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 34

MOTV - Missing Owner Token Validation

Criticality Medium

Location withdraw.rs#16

Status Unresolved

Description

The contract does not perform runtime validation to ensure that the

owner_token_account is correctly configured. Specifically, there is no check verifying

that the account is owned by the owner , nor that it holds the correct token mint

associated with the stake_receipt . This omission allows users to supply arbitrary

token accounts, including accounts they control that use a different mint. As a result, token

transfers during the withdrawal process could be redirected to unintended destinations or

token types, compromising the integrity and correctness of reward or principal withdrawals.

 #[account(mut)]
 pub owner_token_account: Account<'info, TokenAccount>,

Recommendation

It is recommended to include the following runtime validations in the validate function

of the Withdraw instruction:

●​ Ensure that the owner_token_account.owner matches the owner.key()

.

●​ Ensure that the owner_token_account.mint matches the

stake_receipt.mint .

Adding these validations will ensure that the withdrawal can only be made to a legitimate

and expected token account, preserving the integrity of the withdrawal mechanism.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 35

MSOC - Missing Source Ownership Check

Criticality Medium

Location stake.rs#63
stake_nft.rs#110

Status Unresolved

Description

The transfer_from_payer_to_vault function in both staking flows (token and nft)

performs a transfer from a source account to a program-controlled vault , using the

payer as the authority. However, there is no runtime check to ensure that the source

account is actually owned by the payer .

Without this verification, a malicious user could supply a token or NFT account they do not

own. Although the transfer will typically fail unless the payer has been granted delegated

authority, there are edge cases—such as leftover approvals or explicit delegation—where

the transfer may succeed unintentionally. In such cases, if the actual owner of the token

account has granted Approve access to the payer, the payer can unilaterally

transfer tokens or NFTs and stake them without consent, effectively stealing or misusing the

source's funds.

 pub fn transfer_from_payer_to_vault(&self, amount: u64) ->
Result<()> {
 let cpi_ctx = CpiContext::new(
 self.token_program.to_account_info(),
 Transfer {
 from: self.source.to_account_info(),
 to: self.vault.to_account_info(),
 authority: self.payer.to_account_info(),
 },
);
 token::transfer(cpi_ctx, amount)
 }

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 36

 /// Transfer NFT from the payer's source account to the
vault.
 pub fn transfer_from_payer_to_vault(&self) -> Result<()> {
 let cpi_ctx = CpiContext::new(
 self.token_program.to_account_info(),
 Transfer {
 from: self.source.to_account_info(),
 to: self.vault.to_account_info(),
 authority: self.payer.to_account_info(),
 },
);
 token::transfer(cpi_ctx, self.source.amount)
 }

Recommendation

It is recommended to include an explicit runtime check to ensure that source.owner ==

payer.key() prior to performing the transfer. This validation guarantees that the signer

has full control over the funds or NFT being staked and prevents misuse through token

delegation or previously approved allowances. Enforcing this constraint makes the staking

logic safer, more predictable, and easier to audit.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 37

MUCE - Missing Unstake Cooldown Enforcement

Criticality Medium

Location unstake.rs#31

Status Unresolved

Description

The Unstake instruction allows users to unstake without enforcing any minimum

cooldown period between staking and unstaking. As a result, a user can stake and

immediately unstake, solely to become eligible for reward accrual without maintaining an

actual stake. This undermines the staking incentive structure and opens the protocol to

potential reward farming abuse—where users repeatedly stake-unstake in rapid succession

to extract value without meaningful participation.

 pub fn validate(ctx: &Context<Unstake>) -> Result<()> {
 // Valdiate the StakeReceipt isn't already unstaking
 require!(
 ctx.accounts.stake_receipt.can_unstake(),
 ErrorCode::CantUnstakeAgain
);
 Ok(())
 }
}

pub fn handler<'info>(ctx: Context<'_, '_, '_, 'info, Unstake<'info>>) ->
Result<()> {
 let now = Clock::get()?.unix_timestamp;

 {
 ...

Recommendation

It is recommended to enforce a minimum cooldown or lock-in period by validating that the

current timestamp exceeds the withdrawable_at field set during staking. This

ensures that users cannot instantly exit and must adhere to the defined unstake delay.

Adding this check improves the fairness and security of the staking mechanism and deters

opportunistic exploitation.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 38

UNWR - Uniform NFT Weighting Risk

Criticality Medium

Location add_nft.rs#45

Status Unresolved

Description

The contract applies a fixed weight to each NFT asset without accounting for the

collection’s total supply or the number of NFTs actually staked. Unlike fungible

tokens—where weight reflects the staked amount—NFTs are assigned a flat asset weight,

which is then applied uniformly across all individual NFTs. This design leads to

disproportionate reward distribution, where each NFT receives an equal share of the total

NFT asset weight, regardless of how many NFTs exist or are staked. For example, if the NFT

asset weight is set to 400/1000 and 10 NFTs are staked, each NFT effectively receives

400/1000. However, if the collection size is 5000, this approach over-allocates rewards

relative to their intended share, potentially resulting in inflation or reward abuse.

#[derive(AnchorDeserialize, AnchorSerialize)]
pub struct AddNftArgs {
 pub weight_numerator: u64,
 pub weight_denominator: u64,
}

pub fn handler(ctx: Context<AddNft>, args: AddNftArgs) ->
Result<()> {
 let stake_pool = &mut ctx.accounts.stake_pool;

 let asset_weight = Asset::new(
 &ctx.accounts.mint.key(),
 args.weight_numerator,
 args.weight_denominator,
 None,
 Some(ctx.accounts.metadata.key),
);
 stake_pool.set_next_asset(asset_weight)?;

 Ok(())
}

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 39

Recommendation

It is recommended to adjust the NFT asset weight calculation by dividing the assigned

asset weight by the total supply (or total staked amount) of NFTs. This would ensure each

NFT receives a proportional share of the assigned weight, aligning reward distribution with

actual stake representation. Alternatively, separate logic should be implemented for

NFT-based assets to normalise their contribution based on collection size, preventing

disproportionate allocation of pool rewards.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 40

MRPV - Missing Reward Pool Validation

Criticality Minor / Informative

Location stake.rs#56

Status Unresolved

Description

The validate function in the Stake instruction does not enforce the presence of at

least one reward pool before allowing a user to stake assets. While internal checks such as

get_asset_by_mint ensure the asset exists, they do not verify whether any reward

pool is available to distribute rewards. This omission could lead to a misleading user

experience where users are allowed to stake tokens without receiving any rewards, or

where the staking operation proceeds under invalid economic conditions.

 pub fn validate(_ctx: &Context<Stake>, _args: &StakeArgs) ->
Result<()> {
 // Validation for checking if the mint is in the list of Assets
happens in `get_asset_by_mint`.

 Ok(())
 }

Recommendation

It is recommended to add a validation check to ensure that at least one active reward pool

exists before allowing staking to proceed. This guarantees that staking actions are

meaningful and that reward calculations have valid targets. Adding such validation improves

the reliability of the protocol and prevents users from unknowingly interacting with an

incomplete or improperly configured reward system.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 41

CCR - Contract Centralization Risk

Criticality Minor / Informative

Location lib.rs#17

Status Unresolved

Description

The contract's functionality and behavior are heavily dependent on external parameters or

configurations. While external configuration can offer flexibility, it also poses several

centralization risks that warrant attention. Centralization risks arising from the dependence

on external configuration include Single Point of Control, Vulnerability to Attacks,

Operational Delays, Trust Dependencies, and Decentralization Erosion.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 42

 /* Admin related instructions below */

 #[access_control(CreateStakePool::validate(&ctx))]
 pub fn create_stake_pool(
 ctx: Context<CreateStakePool>,
 args: CreateStakePoolArgs,
) -> Result<()> {
 instructions::admin::create_stake_pool::handler(ctx, args)
 }

 #[access_control(AddToken::validate(&ctx, &args))]
 pub fn add_token(ctx: Context<AddToken>, args: AddTokenArgs) ->
Result<()> {
 instructions::admin::add_token::handler(ctx, args)
 }

 #[access_control(AddNft::validate(&ctx, &args))]
 pub fn add_nft(ctx: Context<AddNft>, args: AddNftArgs) -> Result<()>
{
 instructions::admin::add_nft::handler(ctx, args)
 }

 #[access_control(AddRewardPool::validate(&ctx))]
 pub fn add_reward_pool(ctx: Context<AddRewardPool>) -> Result<()> {
 instructions::admin::add_reward_pool::handler(ctx)
 }

 #[access_control(UpdateAuthority::validate(&ctx))]
 pub fn update_authority(
 ctx: Context<UpdateAuthority>,
 args: UpdateAuthorityArgs,
) -> Result<()> {
 instructions::admin::update_authority::handler(ctx, args)
 }

Recommendation

To address this finding and mitigate centralization risks, it is recommended to evaluate the

feasibility of migrating critical configurations and functionality into the contract's codebase

itself. This approach would reduce external dependencies and enhance the contract's

self-sufficiency. It is essential to carefully weigh the trade-offs between external

configuration flexibility and the risks associated with centralization.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 43

ISU - Inconsistent Signer Usage

Criticality Minor / Informative

Location create_stake_pool.rs#11

Status Unresolved

Description

The contract is using both payer and base as Signer accounts without enforcing

that they are the same address. This allows two different signers to be passed in, which can

lead to confusion, unintended behaviour, or privilege escalation if base is assumed to be

the creator or sole controller of the pool.

 pub payer: Signer<'info>,

 pub base: Signer<'info>,

Recommendation

It is recommended to add a runtime check ensuring that payer and base are the

same signer, or to explicitly document and validate the intended distinction between their

roles.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 44

IRPI - Insecure Reward Pool Input

Criticality Minor / Informative

Location stake.rs#86
increase_stake.rs#73

Status Unresolved

Description

The contract relies on ctx.remaining_accounts to pass in all relevant

RewardPool accounts for recalculating reward distribution. This design delegates

responsibility to the caller to supply the correct accounts in the correct order, which

introduces risks of misconfiguration or intentional manipulation. If the wrong set or

sequence of accounts is provided, reward recalculation could behave incorrectly, leading to

misallocated rewards, incorrect accounting, or silent failures that are difficult to detect

on-chain.

 let stake_pool = &mut ctx.accounts.stake_pool;
 stake_pool.recalculate_rewards_per_effective_stake(
 &ctx.remaining_accounts,
 Stake::REMAINING_ACCOUNT_PAGE_SIZE,
)?;

Recommendation

It is recommended to fetch or derive all relevant RewardPool accounts internally or

through deterministic means instead of relying on user-supplied remaining accounts. If that

is not feasible, implement strict validation logic to verify that the supplied accounts match

the expected reward pools both in content and order. This ensures that reward calculations

operate on trusted data and preserves the integrity of the staking and distribution process.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 45

MEE - Missing Events Emission

Criticality Minor / Informative

Location create_stake_pool.rs#41
update_authority.rs.rs#29
mint_burn_redeem.rs#38

Status Unresolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

pub fn handler(ctx: Context<CreateStakePool>, args: CreateStakePoolArgs)
-> Result<()> {
...
}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 46

MIC - Missing Input Checks

Criticality Minor / Informative

Location add_token.rs#54
add_nft.rs#51
add_reward_pool.rs#66

Status Unresolved

Description

The contract fails to validate inputs during the AddToken instruction, particularly the

weight_numerator and weight_denominator values used in constructing an

Asset . There are no checks to ensure the denominator is non-zero, which can lead to

division-by-zero panics or silent misbehaviour. Additionally, there is no constraint enforcing

numerator ≤ denominator , which could result in invalid or misleading weight

configurations. The contract also lacks safeguards to prevent the same token (mint) from

being added multiple times, which may allow duplication of assets and unexpected vault

behaviour.

#[derive(AnchorDeserialize, AnchorSerialize)]
pub struct AddTokenArgs {
 pub weight_numerator: u64,
 pub weight_denominator: u64,
}

pub fn handler(ctx: Context<AddToken>, args: AddTokenArgs) ->
Result<()> {
 let stake_pool = &mut ctx.accounts.stake_pool;
 let asset_weight = Asset::new(
 &ctx.accounts.mint.key(),
 args.weight_numerator,
 args.weight_denominator,
 Some(&ctx.accounts.vault.key()),
 None,
);
 stake_pool.set_next_asset(asset_weight)?;

 Ok(())
}

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 47

Recommendation

It is recommended to implement explicit validation logic in the validate function or

within the handler itself to ensure that:

●​ weight_denominator is non-zero,

●​ weight_numerator ≤ weight_denominator , and

●​ the given asset token has not already been added to the stake pool. These checks

are essential for maintaining logical consistency, preventing runtime errors, and

enforcing intended economic constraints.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 48

MVMV - Missing Vault Mint Verification

Criticality Minor / Informative

Location withdraw.rs#33

Status Unresolved

Description

The contract does not validate that the vault token account contains the correct token

mint that matches the stake_receipt.mint . While the vault address itself is

linked to the stake_receipt via a has_one constraint, the actual contents of the

vault —specifically the mint —are not verified. This creates a risk of misrouted or

invalid token transfers, where tokens of an unexpected type are sent to users during

withdrawals.

 #[account(mut)]
 pub vault: Account<'info, TokenAccount>,

Recommendation

It is recommended to add a runtime check that asserts vault.mint ==

stake_receipt.mint . This ensures the vault holds the expected asset and prevents

potential misdirection of funds due to mint mismatches. Verifying this strengthens the

correctness and reliability of token handling in the protocol.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 49

MZAC - Missing Zero Amount Check

Criticality Minor / Informative

Location stake.rs#77
claim_reward_tokens.rs#30

Status Unresolved

Description

The StakeArgs struct allows users to specify the amount of tokens to stake, but the

handler function does not perform a check to ensure that the provided amount is

greater than zero. As a result, users can submit staking transactions with a zero value,

which may lead to unnecessary on-chain operations, misleading accounting, or unexpected

protocol behaviour. In some cases, it may even be exploited to trigger downstream logic

(e.g., reward calculations or state updates) without contributing any stake.

pub struct StakeArgs {
 /// Amount of tokens to stake
 pub amount: u64,
}

pub fn handler(ctx: Context<Stake>, args: StakeArgs) ->
Result<()> {
 ctx.accounts.transfer_from_payer_to_vault(args.amount)?;
...

Recommendation

It is recommended to include a validation step that explicitly checks amount > 0 before

proceeding with staking logic. Rejecting zero-amount transactions prevents wasteful

execution, ensures protocol state remains meaningful, and protects against edge-case

abuse where zero-stake interactions could influence system state or reward calculations.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 50

NANV - NFT Amount Not Verified

Criticality Minor / Informative

Location stake_nft.rs#132

Status Unresolved

Description

The contract does not validate that the NFT source account holds exactly one token before

initiating staking, nor does it confirm that the account balance is zero before attempting to

close it. In the context of NFTs, the source account should have an amount of exactly 1

prior to transfer, and 0 afterwards. Failing to enforce these conditions may result in incorrect

staking behaviour, runtime errors, or account closure attempts on non-empty accounts,

which will cause the transaction to fail unexpectedly. This opens the door to both

unintentional bugs and potential abuse of the staking flow.

pub fn handler(ctx: Context<StakeNft>) -> Result<()> {
 // Should be 1 for an NFT, but probably better to use source
amount
 let source_amount = ctx.accounts.source.amount;
 ctx.accounts.transfer_from_payer_to_vault()?;

 ...

 ctx.accounts.close_source_account()?;

 Ok(())
}

Recommendation

It is recommended to add runtime checks to ensure:

●​ ctx.accounts.source.amount == 1 before initiating the transfer (to

enforce NFT semantics), and

●​ ctx.accounts.source.amount == 0 before calling

close_source_account() (to ensure the account is eligible for closure).

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 51

These checks improve contract safety, uphold NFT logic assumptions, and prevent invalid

state transitions or staking errors.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 52

POAO - Panic on Arithmetic Overflow

Criticality Minor / Informative

Location stake.rs#113
stake_pool.rs#105

Status Unresolved

Description

The contract performs arithmetic operations using .checked_add() and similar

methods but handles potential overflows by calling .expect() with a panic message.

This approach causes the program to terminate abruptly if an overflow occurs, rather than

handling the condition gracefully. Using panics in a smart contract context reduces

reliability, obscures failure causes, and increases the risk of denial-of-service

scenarios—particularly when user input or edge cases lead to unexpected overflows.

 let total_weighted_stake = stake_pool
 .total_weighted_stake
 .as_u128()
 .checked_add(effective_stake.as_u128())
 .expect("overflow");
...
 pub fn calculate_effect_stake(&self, amount: u64) -> u128 {
 let numerator =
primitive::u128::from(self.weight_numerator);
 let denominator =
primitive::u128::from(self.weight_denominator);
 let weight = primitive::u128::from(amount)
 .checked_mul(numerator)
 .expect("overflow")
 .checked_div(denominator)
 .expect("overflow");
 u128(weight.to_le_bytes())
 }

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 53

Recommendation

It is recommended to replace panic-based overflow handling with proper error propagation

using ? and a descriptive error code (e.g., ErrorCode::Overflow). This ensures

the contract can fail safely and predictably, improving its robustness and making it easier to

diagnose and correct issues during development and runtime.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 54

PTAI - Potential Transfer Amount Inconsistency

Criticality Minor / Informative

Location stake.rs#63
increase_stake.rs#48

Status Unresolved

Description

The transfer_from_payer_to_vault functions are used to transfer a specified

amount of tokens to the contract. The fee or tax is an amount that is charged to the sender

of a token when tokens are transferred to another address. According to the specification,

the transferred amount could potentially be less than the expected amount. This may

produce inconsistency between the expected and the actual behavior.

The following example depicts the diversion between the expected and actual amount.

Tax Amount Expected Actual

No Tax 100 100 100

10% Tax 100 100 90

 pub fn transfer_from_payer_to_vault(&self, amount: u64) ->
Result<()> {
 let cpi_ctx = CpiContext::new(
 self.token_program.to_account_info(),
 Transfer {
 from: self.source.to_account_info(),
 to: self.vault.to_account_info(),
 authority: self.payer.to_account_info(),
 },
);
 token::transfer(cpi_ctx, amount)
 }

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 55

Recommendation

The team is advised to take into consideration the actual amount that has been transferred

instead of the expected.

It is important to note that a token transfer tax is not a standard feature of the token

specification, and it is not universally implemented by all token contracts. Therefore, the

contract could produce the actual amount by calculating the difference between the

transfer call.

 Actual Transferred Amount = Balance After Transfer - Balance

Before Transfer

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 56

RSSC - Redundant Stake State Checks

Criticality Minor / Informative

Location stake_receipt.rs#36

Status Unresolved

Description

The StakeReceipt struct defines two separate functions— can_unstake() and

can_claim_rewards() —which both return true only when withdrawable_at

== 0 . These methods perform the same check, resulting in redundant logic and potential

confusion about whether unstaking and claiming rewards have different eligibility

conditions. Maintaining duplicate logic increases the risk of future inconsistencies if one

method is updated independently.

impl StakeReceipt {
 ...

 /// Returns whether or not the StakeReceipt is in a state that allows
unstaking.
 pub fn can_unstake(&self) -> bool {
 self.withdrawable_at == 0
 }

 /// Returns whether or not the StakeReceipt is in a state that allows
claiming rewards.
 pub fn can_claim_rewards(&self) -> bool {
 self.withdrawable_at == 0
 }

Recommendation

It is recommended to consolidate these functions into a single method (e.g.,

is_active() or is_stake_locked()) that expresses the underlying condition

clearly. If future differentiation is needed, the method can be extended, but until then,

reducing duplication improves clarity and maintainability.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 57

TSI - Tokens Sufficiency Insurance

Criticality Minor / Informative

Location stake_pool.rs#365

Status Unresolved

Description

The tokens are not held within the contract itself. Instead, the contract is designed to

provide the tokens from an external administrator. While external administration can provide

flexibility, it introduces a dependency on the administrator's actions, which can lead to

various issues and centralization risks.

// Transfer the reward tokens
let cpi_accounts = Transfer {
 from: reward_vault_info.clone(),
 to: user_reward_token.clone(),
 authority: stake_pool_account.clone(),
};
let cpi_ctx = CpiContext {
 accounts: cpi_accounts,
 remaining_accounts: vec![],
 program: token_program_info.clone(),
 signer_seeds: &[stake_pool_signer_seeds!(self)],
};
token::transfer(cpi_ctx, total_claimable)?;

Recommendation

It is recommended to consider implementing a more decentralized and automated

approach for handling the contract tokens. One possible solution is to hold the tokens

within the contract itself. If the contract guarantees the process it can enhance its reliability,

security, and participant trust, ultimately leading to a more successful and efficient process.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 58

UVP - Unchecked Vault Parameters

Criticality Minor / Informative

Location stake.rs#29

Status Unresolved

Description

The contract does not perform runtime checks to validate critical properties of the vault

account, such as confirming that the mint matches the expected token and that the

owner is the stake_pool . Without these checks, it is possible for a malicious or

misconfigured vault account to be passed to the instruction, leading to incorrect

accounting, misrouted funds, or unauthorised control over token balances. Relying solely

on account constraints at the macro level does not guarantee correctness unless all

assumptions are explicitly validated at runtime.

 #[account(mut)]
 pub vault: Account<'info, TokenAccount>,

Recommendation

It is recommended to include runtime validation logic that ensures the vault.mint

matches the expected token mint and that the vault.owner is set to the

stake_pool address. These checks should be added early in the instruction handler or

validate method to prevent improper vault associations and protect the integrity of

token operations.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 59

USU - Unnecessary Struct Usage

Criticality Minor / Informative

Location create_stake_pool.rs#36
stake.rs#84

Status Unresolved

Description

The contract is using a struct, CreateStakePoolArgs , to encapsulate a single field,

authority , which serves as the only parameter in the context of stake pool creation.

While this approach may be anticipating future extensibility, it introduces unnecessary

abstraction and overhead for the current implementation. The presence of a struct for a

single value complicates the interface, potentially misleading future maintainers into

believing there is or will be multiple parameters involved. This design choice reduces clarity

without offering functional benefits in its current form.

pub struct CreateStakePoolArgs {
 /// The key that will be the authority over the StakePool
 pub authority: Pubkey,
}

Recommendation

It is recommended to replace the struct with a standalone variable, especially since only

one parameter is used. This simplifies the function signature, improves readability, and

avoids implying unnecessary complexity. If additional parameters are expected in future

versions, the struct can be reintroduced at that time.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 60

UAI - Unvalidated Authority Input

Criticality Minor / Informative

Location create_stake_pool.rs#36
update_authority.rs29

Status Unresolved

Description

The contract accepts a Pubkey as input to assign or update authority roles—such as in

stake pool creation or authority updates—without validating that the provided key is a valid

and non-default address. This pattern appears in multiple instruction argument structs (e.g.,

CreateStakePoolArgs , UpdateAuthorityArgs) where the input authority can be

set to Pubkey::default() (i.e., the all-zero address). This omission may lead to

critical misconfigurations, such as unintentionally assigning control to an unusable or

unowned address, ultimately resulting in permanent loss of administrative access or the

inability to manage protocol operations.

pub struct CreateStakePoolArgs {
 /// The key that will be the authority over the StakePool
 pub authority: Pubkey,
}

#[derive(AnchorDeserialize, AnchorSerialize)]
pub struct UpdateAuthorityArgs {
 pub new_authority: Pubkey,
}

pub fn handler(ctx: Context<UpdateAuthority>, args: UpdateAuthorityArgs)
-> Result<()> {
 let stake_pool = &mut ctx.accounts.stake_pool;
 stake_pool.authority = args.new_authority;

 Ok(())
}

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 61

Recommendation

It is recommended to implement validation logic to ensure that any authority-related input is

not equal to the default public key. This check should be enforced in the corresponding

validate functions or directly within handler logic to ensure proper contract

configuration and to prevent accidental or malicious assignment of invalid authority values.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 62

Summary
Mage Labs contract implements a weighted staking and reward distribution mechanism

supporting both fungible tokens and NFTs. This audit investigates security issues, business

logic concerns, and potential improvements to ensure correctness, efficiency, and

readiness for production deployment.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 63

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Overview
	Admin Functionality
	Stake
	Increase Stake
	Claim Reward Tokens
	Mint, Burn, and Redeem
	Stake NFT
	
	Unstake
	Withdraw
	Reward Distribution Mechanism

	Contract Readability Comment
	Findings Breakdown
	Diagnostics
	MRTU - Misaligned Reward Token Usage
	Description
	Recommendation

	MAC - Missing Access Control
	Description
	Recommendation

	
	MRAV - Missing Reward Account Validations
	Description
	Recommendation

	
	MRU - Missing Reward Update
	Description
	
	Recommendation

	
	MSTRP - Missing Synthetic Token Redemption Path
	Description
	Recommendation

	
	SRRC - Stale Reward Rate Calculation
	Description
	Recommendation

	
	UCT - Uninitialized Cooldown Time
	Description
	Recommendation

	
	INV - Incomplete NFT Validation
	Description
	
	Recommendation

	
	ISSV - Insufficient Stake State Validation
	Description
	Recommendation

	
	MCVL - Missing Custom Validation Logic
	Description
	
	Recommendation

	
	MOTV - Missing Owner Token Validation
	Description
	Recommendation

	
	MSOC - Missing Source Ownership Check
	Description
	Recommendation

	
	MUCE - Missing Unstake Cooldown Enforcement
	Description
	Recommendation

	UNWR - Uniform NFT Weighting Risk
	Description
	Recommendation

	
	MRPV - Missing Reward Pool Validation
	Description
	Recommendation

	
	CCR - Contract Centralization Risk
	Description
	Recommendation

	
	ISU - Inconsistent Signer Usage
	Description
	Recommendation

	
	IRPI - Insecure Reward Pool Input
	Description
	Recommendation

	
	MEE - Missing Events Emission
	Description
	Recommendation

	
	MIC - Missing Input Checks
	Description
	
	Recommendation

	
	MVMV - Missing Vault Mint Verification
	Description
	Recommendation

	
	MZAC - Missing Zero Amount Check
	Description
	Recommendation

	
	NANV - NFT Amount Not Verified
	Description
	Recommendation

	
	POAO - Panic on Arithmetic Overflow
	Description
	
	Recommendation

	
	PTAI - Potential Transfer Amount Inconsistency
	Description
	
	Recommendation

	
	RSSC - Redundant Stake State Checks
	Description
	Recommendation

	
	TSI - Tokens Sufficiency Insurance
	Description
	Recommendation

	
	UVP - Unchecked Vault Parameters
	Description
	Recommendation

	
	USU - Unnecessary Struct Usage
	Description
	Recommendation

	
	UAI - Unvalidated Authority Input
	Description
	
	Recommendation

	Summary
	Disclaimer
	About Cyberscope

