

Audit Report
Mage Labs
July 2025

Repository https://github.com/qu0laz/magelabs-staking

Commit 44f50c7795cbfc1ece90f97deebf19a62e5aa218

Audited by © cyberscope

https://github.com/qu0laz/magelabs-staking

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 1

Table of Contents
Table of Contents​ 1
Risk Classification​ 3
Review​ 4

Audit Updates​ 4
Source Files​ 4

Overview​ 7
Admin Functionality​ 7
Stake​ 7
Increase Stake​ 8
Claim Reward Tokens​ 8
Mint, Burn, and Redeem​ 8
Stake NFT​ 8
Unstake​ 9
Withdraw​ 9
Reward Distribution Mechanism​ 9

Findings Breakdown​ 10
Diagnostics​ 11

CCR - Contract Centralization Risk​ 12
Description​ 12
Recommendation​ 13

FSA - First Stake Advantage​ 14
Description​ 14
Recommendation​ 14

IRPI - Insecure Reward Pool Input​ 15
Description​ 15
Recommendation​ 15

MEE - Missing Events Emission​ 16
Description​ 16
Recommendation​ 16

MOTV - Missing Owner Token Validation​ 17
Description​ 17
Recommendation​ 17
Team Update​ 18

MPC - Missing Period Check​ 19
Description​ 19
Recommendation​ 19
Team Update​ 19

MRAV - Missing Reward Account Validations​ 20
Description​ 20

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 2

Recommendation​ 21
Team Update​ 21

MRPV - Missing Reward Pool Validation​ 22
Description​ 22
Recommendation​ 22

MSTRP - Missing Synthetic Token Redemption Path​ 23
Description​ 23
Recommendation​ 23

TSI - Tokens Sufficiency Insurance​ 24
Description​ 24
Recommendation​ 24
Team Update​ 25

UNWR - Uniform NFT Weighting Risk​ 26
Description​ 26
Recommendation​ 27

Summary​ 28
Disclaimer​ 29
About Cyberscope​ 30

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 3

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1.​ Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2.​ Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1.​ Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2.​ Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3.​ Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4.​ Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 4

Review

Repository https://github.com/qu0laz/magelabs-staking

Commit 44f50c7795cbfc1ece90f97deebf19a62e5aa218

Audit Updates

Initial Audit 11 Jun 2025

https://github.com/cyberscope-io/audits/blob/main/mage/v1/au

dit.pdf

Corrected Phase 2 05 Jul 2025

https://github.com/cyberscope-io/audits/blob/main/mage/v2/au

dit.pdf

Corrected Phase 3 17 Jul 2025

Source Files

Filename SHA256

./errors.rs 4039ed64e810e23f8390123502785a4cbc87f78a2

4b0b5724935e15f4afc066b

./state/stake_receipt.rs 41de49698ff0632182a8fd808f8b50f05f7adbac69

2d1acff92e7396b3a82661

./state/mod.rs 27f6ec65b6423d551ddb8c92ef4b2cbc738bbee2

85be02949c4149c3f36b5e09

./state/stake_pool.rs 6bbc55265e02403109088252385709023d415e50

36c4f66c905787f0444daa6c

https://github.com/cyberscope-io/audits/blob/main/mage/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/mage/v1/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/mage/v2/audit.pdf
https://github.com/cyberscope-io/audits/blob/main/mage/v2/audit.pdf

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 5

./instructions/claim_reward_tokens.rs 95f0d5ffdf58ea2575870d2aef62ac4a1a44f06621b

3059e1b53e5a177f03ecc

./instructions/unstake.rs 6e28ba0677668e3671eaef21c3abb3df409693743

9f5a04a2577e021d0f64a1c

./instructions/stake.rs db6a0594486ed0d6aecc15160f6bdd1718785516

546f85e1d86d11c8cc45d99f

./instructions/mod.rs e569b8b8b92046acfc2d8c7ae6ef3ab5ef038ad33

0b1c5e574976a3dfcd15d6c

./instructions/stake_nft.rs b0db2c178042d1526611fa9b06a3eec04db60a4b

a786709027417345a2c40725

./instructions/withdraw.rs 962b8c698f9367adde71c87dfbe082008b38132d

d9b9c46a30fa35eb2cc13e1b

./instructions/admin/update_authority.rs ce6355b19027fbb8b278b2b068cee76ec34b68d3

bdcb194ea15128c471511c46

./instructions/admin/add_token.rs 56c89c0dcc1df1907d0700fe596bda5feec45948d

5439106341d3a83cb8cf61c

./instructions/admin/mod.rs fe84eff17640e1fb35cb7a753f8818fb2d4648e013e

119bff48c8a0beb8b2449

./instructions/admin/create_stake_pool.rs 4f46f7d28925c6dd1ac48f5cb2ff9e7067957f02a4

d8987fe9a3900aa3c8ad23

./instructions/admin/add_nft.rs 5619d5da033f8f730b16635e619fef61996a0e3fa3

ade4163d964b5e54784a10

./instructions/admin/add_reward_pool.rs 057c5162ffcfb05b9df00771f23a20fc516c24c80b

742f9ee4c25b36ee072d35

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 6

./instructions/increase_stake.rs 66dc80d3da48a1e98f0270acb40c2980bece9106

5d1d760123c808aa8b2a0e5d

./instructions/mint_burn_redeem.rs 9064ee08236acbed5323b16699233bee61407b59

ed951228f01c400f7f298bf6

./lib.rs 10517da7dcf816be6d482485d4097e8d1cc45867

e23952337e0c6b9bf31953fd

./uint.rs 1d842809e43e1ee702390e311492eaef864c8ced

7711e81fe31e76c239b70a25

./macros.rs c7e386afda5354bfa4fa90a15fa4e2841bc216c092

94810ded3324fd2015a1ab

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 7

Overview
The Mage contracts implement a modular and extensible staking system that supports both

fungible tokens and NFTs, allowing users to stake assets in exchange for proportional

reward distributions. At its core, the system revolves around the StakePool account,

which maintains authority, tracks custom asset weights, and manages multiple

RewardPools . Administrators can initialize stake pools, add supported tokens or NFT

collections with specific weights, assign reward mints, and update pool authorities. The

reward mechanism ensures that rewards are distributed fairly based on weighted stake

contributions, with accounting tokens optionally redeemable for actual reward tokens. The

design promotes flexibility, precise reward allocation, and composability with various asset

types while enforcing access control and account validation throughout the lifecycle of

staking and reward operations.

Admin Functionality

The admin functionality of the protocol enables privileged users to configure and manage

the StakePool through a set of permissioned instructions. Using CreateStakePool

, an admin initializes a new pool instance with an assigned authority. The AddToken and

AddNft instructions allow the admin to register new stakeable assets—either fungible

tokens with associated vaults or NFT collections verified through Metaplex metadata—each

with custom weight parameters influencing stake distribution. Through AddRewardPool

, the admin defines reward configurations by linking real and synthetic reward mints with

vaults and setting mint authorities. Finally, UpdateAuthority allows for the transfer of

administrative control by updating the StakePool 's authority key, ensuring flexible and

secure protocol governance. All critical operations are gated by signer-based authority

checks and account constraints to ensure only authorized entities can modify pool state.

Stake

Users can stake fungible tokens into the protocol by transferring assets from their wallet

into a designated vault managed by the StakePool . Upon staking, a StakeReceipt

is generated, recording the user's effective stake based on asset weighting, the original

deposit amount, and a snapshot of current reward accumulators. This receipt enables

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 8

future reward claims and governs unstaking eligibility. The protocol also recalculates global

rewards upon new deposits to ensure accurate distribution.

Increase Stake

The IncreaseStake instruction allows users to add more tokens to an existing stake

position. Before increasing their stake, users automatically claim and redeem their

accumulated rewards. The additional deposit is converted into an updated effective stake,

increasing both the user's and the pool’s total weighted stake. The process ensures

rewards are settled accurately and state remains consistent before stake growth.

Claim Reward Tokens

This function lets users claim synthetic reward tokens that reflect their share of rewards

accumulated over time. The protocol recalculates reward rates based on vault balances and

user stake before minting the appropriate amount of synthetic tokens. These synthetic

tokens represent a user’s reward entitlement and can be tracked or redeemed in a later

step.

Mint, Burn, and Redeem

This flow enables users to convert synthetic reward tokens into real reward tokens. The

contract mints synthetic rewards, burns them from the user’s account, and transfers an

equivalent amount of real tokens from the reward vault. This two-step process preserves

accounting integrity while ensuring users receive actual value from their earned rewards.

Stake NFT

The StakeNft instruction allows users to stake NFTs that belong to verified collections.

The contract validates the NFT’s metadata and ensures it’s part of an approved collection.

Upon staking, the NFT is transferred to a vault controlled by the StakePool , and a

StakeReceipt is issued to track the user's contribution. The effective stake is computed

based on the NFT asset’s weight, and rewards begin accruing accordingly. The user’s

source token account is closed to reclaim rent once the NFT is secured in the vault.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 9

Unstake

Users initiate the unstaking process using the Unstake instruction, which applies to

both fungible token and NFT stakes. This operation ensures rewards are up to date by

recalculating the pool’s reward distribution and minting any outstanding rewards. It then

decreases the total weighted stake and updates the user's withdrawable_at

timestamp, enforcing a cooldown period before the actual withdrawal is allowed. This

preserves fair reward distribution and prevents immediate stake-exit abuse.

Withdraw

Once the cooldown period ends, users can execute the Withdraw instruction to retrieve

their staked tokens or NFTs. The contract validates the stake receipt and, if the asset is an

NFT, verifies its metadata again. The staked asset is transferred from the protocol vault

back to the user’s wallet. If the withdrawn asset is an NFT, the associated vault is closed to

clean up and reclaim rent. This instruction finalizes the full lifecycle of a stake and ensures

secure asset return to the rightful owner.

Here is a clear and concise paragraph describing how rewards are applied in this system:

Reward Distribution Mechanism

The reward system distributes tokens to stakers proportionally based on their effective

stake, which accounts for the weight of the staked asset. When tokens are deposited into a

reward vault, the recalculate_rewards_per_effective_stake function updates

each RewardPool 's rewards_per_effective_stake accumulator by computing

the difference between the current and previous vault balances. This value is scaled and

divided by the total_weighted_stake to ensure fair allocation. During withdrawal or

unstaking, the user's share of rewards is calculated by multiplying the difference in

reward-per-stake with their effective stake, then minting accounting reward tokens. If

burn_and_redeem is enabled, those tokens are burned and equivalent actual rewards

are transferred from the vault. This mechanism ensures precision, fairness, and

compatibility with both fungible and NFT-based staking assets.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 10

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 11

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 0 11 0 0

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 11

Diagnostics
 ⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ CCR Contract Centralization Risk Acknowledged

⬤ FSA First Stake Advantage Acknowledged

⬤ IRPI Insecure Reward Pool Input Acknowledged

⬤ MEE Missing Events Emission Acknowledged

⬤ MOTV Missing Owner Token Validation Acknowledged

⬤ MPC Missing Period Check Acknowledged

⬤ MRAV Missing Reward Account Validations Acknowledged

⬤ MRPV Missing Reward Pool Validation Acknowledged

⬤ MSTRP Missing Synthetic Token Redemption Path Acknowledged

⬤ TSI Tokens Sufficiency Insurance Acknowledged

⬤ UNWR Uniform NFT Weighting Risk Acknowledged

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 12

CCR - Contract Centralization Risk

Criticality Minor / Informative

Location lib.rs#17

Status Acknowledged

Description

The contract's functionality and behavior are heavily dependent on external parameters or

configurations. While external configuration can offer flexibility, it also poses several

centralization risks that warrant attention. Centralization risks arising from the dependence

on external configuration include Single Point of Control, Vulnerability to Attacks,

Operational Delays, Trust Dependencies, and Decentralization Erosion.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 13

 /* Admin related instructions below */

 #[access_control(CreateStakePool::validate(&ctx))]

 pub fn create_stake_pool(

 ctx: Context<CreateStakePool>,

 args: CreateStakePoolArgs,

) -> Result<()> {

 instructions::admin::create_stake_pool::handler(ctx, args)

 }

 #[access_control(AddToken::validate(&ctx, &args))]

 pub fn add_token(ctx: Context<AddToken>, args: AddTokenArgs) -> Result<()>

{

 instructions::admin::add_token::handler(ctx, args)

 }

 #[access_control(AddNft::validate(&ctx, &args))]

 pub fn add_nft(ctx: Context<AddNft>, args: AddNftArgs) -> Result<()> {

 instructions::admin::add_nft::handler(ctx, args)

 }

 #[access_control(AddRewardPool::validate(&ctx))]

 pub fn add_reward_pool(ctx: Context<AddRewardPool>) -> Result<()> {

 instructions::admin::add_reward_pool::handler(ctx)

 }

 #[access_control(UpdateAuthority::validate(&ctx))]

 pub fn update_authority(

 ctx: Context<UpdateAuthority>,

 args: UpdateAuthorityArgs,

) -> Result<()> {

 instructions::admin::update_authority::handler(ctx, args)

 }

Recommendation

To address this finding and mitigate centralization risks, it is recommended to evaluate the

feasibility of migrating critical configurations and functionality into the contract's codebase

itself. This approach would reduce external dependencies and enhance the contract's

self-sufficiency. It is essential to carefully weigh the trade-offs between external

configuration flexibility and the risks associated with centralization.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 14

FSA - First Stake Advantage

Criticality Minor / Informative

Location stake_pool.rs#194

Status Acknowledged

Description

If rewards exist in the reward pool before staking begins, the first user to stake will be able

to mint reward tokens equal to the entire pre-existing balance when a second user stakes.

Specifically, the first staker receives 100% of the reward allocation at that moment,

effectively minting rewards equivalent to the balance present in the vault prior to the start of

staking. This behavior may be exploited and could lead to system manipulation.

pub fn recalculate_rewards_per_effective_stake<'info>(

 &mut self,

 remaining_accounts: &[AccountInfo<'info>],

 reward_vault_account_page_size: usize,

) -> Result<()> {

 ...

}

Recommendation

The reward vault balance must be carefully managed to align with the intended system

design. In particular, the balance should increase progressively in accordance to the

amount of tokens staked in the system. This ensures a fair distribution of rewards and

mitigates the risk of unintended minting behavior or potential exploitation.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 15

IRPI - Insecure Reward Pool Input

Criticality Minor / Informative

Location stake.rs#84
increase_stake.rs#75

Status Acknowledged

Description

The contract relies on ctx.remaining_accounts to pass in all relevant RewardPool

accounts for recalculating reward distribution. This design delegates responsibility to the

caller to supply the correct accounts in the correct order, which introduces risks of

misconfiguration or intentional manipulation. If the wrong set or sequence of accounts is

provided, reward recalculation could behave incorrectly, leading to misallocated rewards,

incorrect accounting, or silent failures that are difficult to detect on-chain.

 let stake_pool = &mut ctx.accounts.stake_pool;

 stake_pool.recalculate_rewards_per_effective_stake(

 &ctx.remaining_accounts,

 Stake::REMAINING_ACCOUNT_PAGE_SIZE,

)?;

Recommendation

It is recommended to fetch or derive all relevant RewardPool accounts internally or

through deterministic means instead of relying on user-supplied remaining accounts. If that

is not feasible, implement strict validation logic to verify that the supplied accounts match

the expected reward pools both in content and order. This ensures that reward calculations

operate on trusted data and preserves the integrity of the staking and distribution process.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 16

MEE - Missing Events Emission

Criticality Minor / Informative

Location create_stake_pool.rs#41
update_authority.rs.rs#29
mint_burn_redeem.rs#40

Status Acknowledged

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

pub fn handler(ctx: Context<CreateStakePool>, args: CreateStakePoolArgs) ->

Result<()> {

...

}

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 17

MOTV - Missing Owner Token Validation

Criticality Minor / Informative

Location withdraw.rs#16

Status Acknowledged

Description

The contract does not perform runtime validation to ensure that the

owner_token_account is correctly configured. Specifically, there is no check verifying that

the account is owned by the owner , nor that it holds the correct token mint associated

with the stake_receipt . This omission allows users to supply arbitrary token accounts,

including accounts they control that use a different mint. As a result, token transfers during

the withdrawal process could be redirected to unintended destinations or token types,

compromising the integrity and correctness of reward or principal withdrawals.

 #[account(mut)]

 pub owner_token_account: Account<'info, TokenAccount>,

Recommendation

It is recommended to include the following runtime validations in the validate function

of the Withdraw instruction:

●​ Ensure that the owner_token_account.owner matches the owner.key() .

●​ Ensure that the owner_token_account.mint matches the

stake_receipt.mint .

Adding these validations will ensure that the withdrawal can only be made to a legitimate

and expected token account, preserving the integrity of the withdrawal mechanism.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 18

Team Update

The team has acknowledged that this is not a security issue and states:

It is intentional that there is no owner check on the TokenAccount being withdrawn to.

Given the owner of the StakeReceipt is a signer, they are allowed to enter an external

TokenAccount. This is a feature that allows them to withdraw into a separate wallet other

than the one they signed with. However, they MUST has signed with the wallet that owns

the StakeReceipt. Separately, a mint check is not necessary as the Transfer CPI would fail if

the mint does not match that of the from and to accounts.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 19

MPC - Missing Period Check

Criticality Minor / Informative

Location create_stake_pool.rs#28

Status Acknowledged

Description

The contract is processing variables that have not been properly sanitized and checked that

they form the proper shape. These variables may produce vulnerability issues. Specifically

the contract does not ensure the cooldown period is not assigned the zero value. If such a

value is used, the system may be exposed to manipulation and potential loss of funds.

 pub fn validate(_ctx: &Context<CreateStakePool>, args:

&CreateStakePoolArgs) -> Result<()> {

 require!(

 args.authority != Pubkey::default(),

 ErrorCode::InvalidAuthority

);

 Ok(())

 }

}

Recommendation

The team is advised to properly check the variables according to the required

specifications.

Team Update

The team has acknowledged that this is not a security issue and states:

Since the cooldown function is restricted to administrators only and is immutable once

applied, a cooldown value greater than zero will be set.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 20

MRAV - Missing Reward Account Validations

Criticality Minor / Informative

Location stake_pool.rs#346

Status Acknowledged

Description

The mint_accounting_reward_tokens function lacks critical runtime checks for several

user-supplied accounts, leaving the reward distribution mechanism vulnerable to

misdirection or spoofing:

1.​ Recipient Account Mismatch: The owner_accounting_reward_token_info is

not checked for correct ownership (owner.key()) .

2.​ Burn-and-Redeem Destination Mismatch: In the burn_and_redeem branch, the

destination SPL token account (user_reward_token) is not validated to belong to

the caller or match the real reward_pool.reward_mint . This opens the door to

redirection of real rewards.

pub fn mint_accounting_reward_tokens<'info>(

...

 let owner_accounting_reward_token_info =

 &remaining_accounts[remaining_accounts_index + 2];

 let cpi_accounts = MintTo {

 mint: accounting_reward_mint_info.clone(),

 to: owner_accounting_reward_token_info.clone(),

 authority: stake_pool_account.clone(),

 };

...

}

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 21

Recommendation

It is recommended to add the following validations:

●​ require!(owner_accounting_reward_token_info.mint ==

accounting_reward_mint_info.key(), ...)

●​ require!(owner_accounting_reward_token_info.owner == owner.key(),

...)

●​ require!(user_reward_token.owner == owner.key(), ...)

●​ require!(user_reward_token.mint == reward_pool.reward_mint, ...)

These checks are necessary to enforce correct and secure reward delivery, prevent

misdirection of tokens, and preserve the integrity of both synthetic and real reward flows.

Team Update

The team has acknowledged that this is not a security issue and states:

1.​ This is an unnecessary check. The owner is a signature of the instruction, thus the

program can assume that the owner_accounting_reward_token_info is the intended

TokenAccount whether it is owned by the owner or not. The owner could allow

reward tokens to be sent to another wallet if they so chose.

2.​ We do not make the case that the address receiving rewards MUST be the same as

the owner of the StakeReceipt. As long as the owner of the StakeReceipt is the

signer of the transaction, we know that their intention is to have the accounting

tokens sent to an external TokenAccount. Separately, a Mint inconsistency would

error within the Token program’s Mint instruction and thus not required to be

checked in the staking program.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 22

MRPV - Missing Reward Pool Validation

Criticality Minor / Informative

Location stake.rs#54

Status Acknowledged

Description

The validate function in the Stake instruction does not enforce the presence of at

least one reward pool before allowing a user to stake assets. While internal checks such as

get_asset_by_mint ensure the asset exists, they do not verify whether any reward pool is

available to distribute rewards. This omission could lead to a misleading user experience

where users are allowed to stake tokens without receiving any rewards, or where the

staking operation proceeds under invalid economic conditions.

 pub fn validate(_ctx: &Context<Stake>, _args: &StakeArgs) -> Result<()> {

 // Validation for checking if the mint is in the list of Assets

happens in `get_asset_by_mint`.

 Ok(())

 }

Recommendation

It is recommended to add a validation check to ensure that at least one active reward pool

exists before allowing staking to proceed. This guarantees that staking actions are

meaningful and that reward calculations have valid targets. Adding such validation improves

the reliability of the protocol and prevents users from unknowingly interacting with an

incomplete or improperly configured reward system.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 23

MSTRP - Missing Synthetic Token Redemption Path

Criticality Minor / Informative

Location claim_reward_tokens.rs#53

Status Acknowledged

Description

The contract mints synthetic accounting tokens (used for tracking rewards) to users during

reward claims but lacks a redemption mechanism that allows users to convert or burn these

tokens in exchange for the actual underlying reward tokens. As a result, these synthetic

tokens accumulate in user accounts without a way to redeem them for value. Additionally,

the mint_burn logic only handles deltas during reward distribution, not full redemption,

further reinforcing the lack of an exit path. This design creates a misleading impression that

users have received rewards when, in reality, they hold non-redeemable synthetic balances.

// For each reward_pol, mint the reward tokens

 ctx.accounts.stake_pool.mint_accounting_reward_tokens(

 ctx.accounts.owner.to_account_info(),

 ctx.accounts.stake_pool.to_account_info(),

 ctx.accounts.token_program.to_account_info(),

 &ctx.accounts.stake_receipt,

 &ctx.remaining_accounts,

 ClaimRewardTokens::REMAINING_ACCOUNT_PAGE_SIZE,

 false,

)?;

Recommendation

It is recommended to implement a clear and verifiable redemption mechanism that allows

users to convert their synthetic reward tokens into real rewards. This should include explicit

burn logic tied to minting of real reward tokens, along with proper accounting and validation

to prevent abuse. Without such a mechanism, the synthetic rewards model remains

incomplete and may confuse users or lead to loss of expected value.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 24

TSI - Tokens Sufficiency Insurance

Criticality Minor / Informative

Location stake_pool.rs#377

Status Acknowledged

Description

The tokens are not held within the contract itself. Instead, the contract is designed to

provide the tokens from an external administrator. While external administration can provide

flexibility, it introduces a dependency on the administrator's actions, which can lead to

various issues and centralization risks.

// Transfer the reward tokens

let cpi_accounts = Transfer {

 from: reward_vault_info.clone(),

 to: user_reward_token.clone(),

 authority: stake_pool_account.clone(),

};

let cpi_ctx = CpiContext {

 accounts: cpi_accounts,

 remaining_accounts: vec![],

 program: token_program_info.clone(),

 signer_seeds: &[stake_pool_signer_seeds!(self)],

};

token::transfer(cpi_ctx, total_claimable)?;

Recommendation

It is recommended to consider implementing a more decentralized and automated

approach for handling the contract tokens. One possible solution is to hold the tokens

within the contract itself. If the contract guarantees the process it can enhance its reliability,

security, and participant trust, ultimately leading to a more successful and efficient process.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 25

Team Update

The team has acknowledged that this is not a security issue and states:

The claimable revenue will be entered automatically, as the DEX includes a function by

which fee revenue is sent to the RewardPools for liquidity providers.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 26

UNWR - Uniform NFT Weighting Risk

Criticality Minor / Informative

Location add_nft.rs#66

Status Acknowledged

Description

The contract applies a fixed weight to each NFT asset without accounting for the

collection’s total supply or the number of NFTs actually staked. Unlike fungible

tokens—where weight reflects the staked amount—NFTs are assigned a flat asset weight,

which is then applied uniformly across all individual NFTs. This design leads to

disproportionate reward distribution, where each NFT receives an equal share of the total

NFT asset weight, regardless of how many NFTs exist or are staked. For example, if the NFT

asset weight is set to 400/1000 and 10 NFTs are staked, each NFT effectively receives

400/1000. However, if the collection size is 5000, this approach over-allocates rewards

relative to their intended share, potentially resulting in inflation or reward abuse.

#[derive(AnchorDeserialize, AnchorSerialize)]

pub struct AddNftArgs {

 pub weight_numerator: u64,

 pub weight_denominator: u64,

}

pub fn handler(ctx: Context<AddNft>, args: AddNftArgs) -> Result<()>

{

 let stake_pool = &mut ctx.accounts.stake_pool;

 let asset_weight = Asset::new(

 &ctx.accounts.mint.key(),

 args.weight_numerator,

 args.weight_denominator,

 None,

 Some(ctx.accounts.metadata.key),

);

 stake_pool.set_next_asset(asset_weight)?;

 Ok(())

}

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 27

Recommendation

It is recommended to adjust the NFT asset weight calculation by dividing the assigned

asset weight by the total supply (or total staked amount) of NFTs. This would ensure each

NFT receives a proportional share of the assigned weight, aligning reward distribution with

actual stake representation. Alternatively, separate logic should be implemented for

NFT-based assets to normalise their contribution based on collection size, preventing

disproportionate allocation of pool rewards.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 28

Summary
Mage Labs contract implements a weighted staking and reward distribution mechanism

supporting both fungible tokens and NFTs. This audit investigates security issues, business

logic concerns, and potential improvements to ensure correctness, efficiency, and

readiness for production deployment.

Mage Labs Audit​ ​ ​ ​ ​ ​ ​ 29

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

	Table of Contents
	
	Risk Classification
	Review
	Audit Updates
	Source Files

	Overview
	Admin Functionality
	Stake
	Increase Stake
	Claim Reward Tokens
	Mint, Burn, and Redeem
	Stake NFT
	
	Unstake
	Withdraw
	Reward Distribution Mechanism

	Findings Breakdown
	Diagnostics
	CCR - Contract Centralization Risk
	Description
	Recommendation

	
	FSA - First Stake Advantage
	Description
	Recommendation

	
	IRPI - Insecure Reward Pool Input
	Description
	Recommendation

	MEE - Missing Events Emission
	Description
	Recommendation

	
	MOTV - Missing Owner Token Validation
	Description
	Recommendation
	
	Team Update

	
	MPC - Missing Period Check
	Description
	Recommendation
	Team Update

	
	MRAV - Missing Reward Account Validations
	Description
	
	Recommendation
	Team Update

	MRPV - Missing Reward Pool Validation
	Description
	Recommendation

	
	MSTRP - Missing Synthetic Token Redemption Path
	Description
	Recommendation

	
	TSI - Tokens Sufficiency Insurance
	Description
	Recommendation
	
	Team Update

	
	UNWR - Uniform NFT Weighting Risk
	Description
	Recommendation

	Summary
	Disclaimer
	About Cyberscope

