Preliminary
Security Audit
Report of
Mage Labs:
Findings

As of 2025-0/-19.

contract MageDEXRevenueRainn
address public founder = Bxi
UiNtZob public magicliguidit

mappingladdress =) uint25¢
mappingladdress =» bool|

event Enlightenment!

function stakeYrc howMuchYouBelieve

requirelam ~laimedTheirDestinu:

| g] SF e |

ep, uint256 reward):

6 amount0fHopium) publ
), "Believe harder."):
sender| += amountOfHopiur

Improperly closing accounts without marking them as
closed, enabling reuse/exploitation.

[[programs/magelabs/src/instructions/close.rs:14, 23-26

‘account_to_close is not actually closed. Only the
lamports are moved.

1. No zeroing out the account data.

2. Not marking the account as closed using
CLOSED_ACCOUNT_DISCRIMINATOR

3. No constraint on account_to_close

4. No force_defund implemented: if users accidentally
send tokens to the closed account_to_close, there Is no
way to withdraw.

Follow the good practice in the following example.
Or

Add #[account(close = admin)] constraint, automating
the secure closure of accounts by transferring lamports,
zeroing data, and setting the closed account
discriminator, all In one operation.

anchor lang:: private::CLOSED ACCOUNT DISCRIMINATOR;
anchor lang::prelude::*;

std::10::Cursor;

std: :ops: :DerefMut;

// Other code

pub fn close account(ctx: Context<CloseAccount>) -> ProgramResult {
let account = ctx.accounts.data account.to account info();

let destination = ctx.accounts.destination.to account info();

**destination.lamports.borrow mut() = destination
. lamports ()
.checked add(account.lamports())
cunwrap();

**account.lamports.borrow mut() = 0;

// Zero out the account data

let mut data = account.try borrow mut data()?;

for byte in data.deref mut().iter mut() {
*byte = 0;

[[programs/magelabs/src/instructions/deposit.rs,
Initialize_metadata.rs, intialize.rs, swap_base_input.rs,
withdraw.rs, collect_fund_fee.rs, collect_protocol_fee.rs

#[account (

seeds = |
crate: :AUTH SEED.as bytes(),

1 s
bump,

)]

pub authority: UncheckedAccount< info>,

[t Is discouraged to use std::mem::size_of to compute the
account data len. It does not reflect the actual data size
on-chain.

const : () = {

assert! (
std::mem: :size of::<AmmConfig>() == 232,
"AmmConfig size must be 232 bytes (based on raydium-cp-swap

amm config size)"
) ;
()

Use INIT_SPACE instead since AmmConfig derives
INitSpace.

AmmConfig: :INIT SPACE == 231,

Similar iIssue occurs In,
/[programs/magelabs/src/states/pool.rs:118

Use require_key_eq instead of require_ea.
Because require_eq only ensures two NON-PUBKEY
values are equal.

require eq! (

ctx.accounts.authority.key(),
pool state.pool creator,
ErrorCode: :Unauthorized

) ;

Not use get() for Sysvars
/[[programs/magelabs/src/instructions/lock_fee_anchor.rs

pub clock: Sysvar< info, Clock>,

pool state.anchor lock time = ctx.accounts.clock.unix timestamp;

NoO need to pass in clock as an account.

Use Clock:get() instead.

[t iImproves efficiency and simplicity. Consistent with
other instructions where Clock::get is used instead of
passing clock.

Pervasive in the code.
e.d.

/[programs/magelabs/src/instructions/swap_base_input.rs

pool state.swap fees token 0O.checked add(swap fee).unwrap();

[[programs/magelabs/src/instructions/withdraw.rs:115,
137-141

Variables are not used. Other unused variables to be
summarized here.

let user = ctx.accounts.user.key();

e.g.
/[[programs/magelabs/src/instructions/swap_base_input.rs

The comment before swap_base_input()

This comment claims that you don't do anything with the
swap_fee. However, the code explicitly calculates and
stores all three fee components (swap_fee, creator_fee, and
protocol_fee) in the pool_state.

[[programs/magelabs/src/instructions/swap_base_output.rs
There is no comment before swap_base_output()

2025-07-20

Verification of programs/magelabs/src/curve
/[/programs/magelabs/src/curve/calculator.rs:232
check_curve_value_from_swap.

Pass the verification

O < source_token_amount < bound

O < swap_source_amount < bound,

0 < swap_destination_amount < bound
where bound == u64::MAX

[/programs/magelabs/src/curve/calculator.rs:273
check_pool_value_from_deposit

Pass the verification

0 < lp_token_amount < bound

lp_token_amount <= |p_token_supply < bound

O < swap_token_0O_amount < bounad

0 < swap_token_1_amount < bound

lo_token_amount * swap_token_0O_amount >= lp_token_supply
lo_token_amount * swap_token_1_amount >= |p_token_supply
where bound == 50

[[programs/magelabs/src/curve/calculator.rs:320
check_pool_value_from_withdraw

Pass the verification

O < Ip_token_amount < bound

lo_token_amount <= lp_token_supply < bound

O < swap_token_0O_amount < bound

0 < swap_token_1_amount < bound

lo_token_amount * swap_token_0O_amount >= Ip_token_supply
lp_token_amount * swap_token_1_amount >= Ip_token_supply
where bound == 10

2025-07-23 Meeting
Reimplementation of Close

/[[programs/magelabs/src/instructions/close.rs
use crate:error:ErrorCode;
use anchor_lang::prelude::™;

#[derive(Accounts)]
pub struct Close<'info> {
#{account(
muf,
address = crate::admin::ID @ ErrorCode::SignerlsNotAdmin

)

pub admin: Signer<'info>,

/[/| CHECK: The account to close. The account must be owned by
this program.

/[Never close those accounts that are essential to the protocol's
Integrity.

i

//] If you know the specific type of account to be closed,

//] It's better to use a strongly-typed constraint like:

[/ #[account(mut, close = admin)]

//] pub account_to_close: Account<'info, MyData>

I

/// This approach ensures type safety and helps avoid accidental
closure

/] of critical accounts. Ideally, only close PDAs created by this
program,
/// and never those that are essential to the protocol's integrity.

I

/// However, in this case, we do not know the exact account type at
runtime.

[/ Therefore, although not recommended, we use
"UncheckedAccount.

/// To mitigate risk, we explicitly add an owner = <program_id>
constraint

/// to ensure the account is owned by this program.

i

/// Be cautious: this means *any* account owned by the program

//| can potentially be closed by the admin, which carries significant
5@

#[account(mut, owner = crate:ID)]
pub account_to_close: UncheckedAccount<'info>,

pub system_program: Program<'info, System>,

}

pub fn close(ctx: Context<Close>) - Result<()> {
let dest_starting_lamports = ctx.accounts.admin.lamports();
let source_account_lamports =
ctx.accounts.account_to_close.lamports();

*kctx.accounts.admin.try_borrow_mut_lamports()? =
dest_starting_lamports
.checked_add(source_account_lamports)
ok_or(ErrorCode::ArithmeticError)?; // replace unwrap with error
code.
**ctx.accounts.account_to_close.try_borrow_mut_lamports()? = O;

/[Zero out the account data
let mut data =
ctx.accounts.account_to_close.try_borrow_mut_data()?:

for byte in data.iter_mut() {
*oyte = O;
]

/| Note:
/[CLOSED_ACCOUNT_DISCRIMINATOR was removed from 0.30.

// Instead, data Is zeroed out, including the discriminator.

/[Thus the account is marked as deallocated, from the Solana
runtime's point of view (by zeroing data).

// | have also checked the generated code from #[close=...], it also
just zeros out the data.

Ok(()
}

