

Document

The contents of this document may include confidential information pertaining to the IT

systems, intellectual property, and possible vulnerabilities along with methods of

exploitation that the Client may possess. The report that contains this confidential

information can be utilized internally by the Client, and is made available to the public after

all vulnerabilities are addressed.

Network: Solana

Programming language: Rust

Method: Manual Audit

Client Website: https://magelabs.com

Timeline: 07/05/2025 - 17/05/2025

1

https://magelabs.com

Table of Contents​

Document​ 1

Executive Summary​ 3

Audita Vulnerability Classifications​ 4

Scope​ 5

Findings​ 7

Summary​ 7

Detailed Findings​ 9

Recommendations​ 22

Fixes​ 23

2

Executive Summary
Manual Audit

During the manual audit conducted by our experts, we did not identify any Critical or

High severity vulnerabilities.

We identified 2 Medium and 4 Low severity vulnerabilities, as well as 4 Informational
issues.

Overall Assessment

After a detailed and thorough security review, our researchers did not identify any

vulnerabilities of critical or high severity.

MageLabs DEX is, to the best of our knowledge, safe to use.

Severity Count Acknowledged

Critical 0 -

High 0 -

Medium 2 TBD

Low 4 TBD

Informational 4 TBD

Documentation

We recommend this report, as well as specific information from this report to be included in

MageLabs DEX’s official protocol Documentation.

3

Audita Vulnerability Classifications

Audita follows the most recent standards for vulnerability severities, taking into

consideration both the possible impact and the likelihood of an attack occurring due to a

certain vulnerability.

Severity Description

Critical Critical vulnerability is one where the attack is more straightforward to execute and can

lead to exposure of users’ data, with catastrophic financial consequences for clients

and users of the smart contracts.

High The vulnerability is of high importance and impact, as it has the potential to reveal the

majority of users’ sensitive information and can lead to significant financial

consequences for clients and users of the smart contracts.

Medium The issue at hand poses a potential risk to the sensitive information of a select group of

individual users. If exploited, it has the potential to cause harm to the client's reputation

and could result in unpleasant financial consequences.

Low The vulnerability is relatively minor and not likely to be exploited repeatedly, or is a risk

that the client has indicated is not impactful or significant, given their unique business

situation.

Informational The issue may not pose an immediate threat to ongoing operation or utilization, but it's

essential to consider implementing security and software engineering best practices, or

employing backup measures as a safety net.

4

Scope
The security assessment was scoped to the following files in MageLabs DEX’s code

repository:

Files

-src

 -curve

calculator.rs

constant_product.rs

fees.rs

mod.rs

snapper.rs

-instructions

 -admin

 collect_fund_fee.rs

 collect_protocol_fee.rs

 create_config.rs

 mod.rs

 update_config.rs

 update_pool_status.rs

close.rs

5

deposit.rs

initialize_metadata.rs

initialize.rs

mod.rs

swap_base_input.rs

swap_base_output.rs

withdraw.rs

-states

config.rs

events.rs

mod.rs

oracle.rs

pool.rs

user.rs

-utils

account_load.rs

math.rs

mod.rs

token.rs

error.rs

6

lib.rs

The codebase has been audited up to and including commit:

2773cee9c0a86d3eb70e5e91f932820613e7db93

Findings

Summary

Code Description Severity Fixes

[MAGE-01] Observations can be Insufficient for

TWAP Calculation

Medium TBD

[MAGE-02] TWAP Oracle may not correctly

reflect the price in a volatile market

Medium TBD

[MAGE-03] Inconsistent or Incomplete Access

Control Between Admin and Owner in

Fee Collection Instructions

Low TBD

[MAGE-04] Missing Validation for Fee Parameters

in update_amm_config

Low TBD

[MAGE-05] Dangerous NatSpec Documentation

in update_amm_config

Low TBD

[MAGE-06] The close function does not have any

restrictions in place

Low TBD

[MAGE-07] Unused function level variables Informational TBD

7

[MAGE-08] The Fees::trading_fee function is not

being used anywhere

Informational TBD

[MAGE-09] Typos Informational TBD

[MAGE-10] Redundant functions Informational TBD

8

Detailed Findings

[MAGE-01] Observations can be Insufficient for

TWAP Calculation

Medium

Details:

The ObservationState in oracle.rs uses a fixed-size circular buffer to store observations,

with the size set to OBSERVATION_NUM = 100.

pub const OBSERVATION_NUM: usize = 100;

Each observation is updated every OBSERVATION_UPDATE_DURATION_DEFAULT = 15

seconds.

OBSERVATION_UPDATE_DURATION_DEFAULT = 15

This means the buffer retains a maximum of 25 minutes of historical price data.

 if delta_time < OBSERVATION_UPDATE_DURATION_DEFAULT ​
 return;​
 }

However, this design may not be sufficient. As a result, TWAP calculations may fail to

include the intended time frame, leading to inaccuracies in price-sensitive operations.

Impact:

A fixed 25-minute window could lead to inaccuracies.

A larger observation capacity would provide more accurate TWAP calculations, particularly

in highly active pools or during volatile market conditions where frequent updates shorten

the effective lookback window.

9

Recommendation:

Increase OBSERVATION_NUM to 150–200, allowing the system to retain a broader historical

window without overwriting data too quickly.

[MAGE-02] TWAP Oracle may not correctly reflect

the price in a volatile market

Medium

Details:

The current implementation of the TWAP oracle updates the observation array every 15

seconds, as defined by OBSERVATION_UPDATE_DURATION_DEFAULT:

pub const OBSERVATION_UPDATE_DURATION_DEFAULT: u64 = 15;

 pub fn update(​
 &mut self,​
 block_timestamp: u64,​
 token_0_price_x32: u128,​
 token_1_price_x32: u128,​
) {​
 let observation_index = self.observation_index;​
 if !self.initialized {​
 self.initialized = true;​
 self.observations[observation_index as usize].block_timestamp =

block_timestamp;​
 self.observations[observation_index as

usize].cumulative_token_0_price_x32 = 0;​
 self.observations[observation_index as

usize].cumulative_token_1_price_x32 = 0;​
 } else {​
 let last_observation = self.observations[observation_index as

usize];​
 let delta_time =

10

block_timestamp.saturating_sub(last_observation.block_timestamp);​
---> if delta_time < OBSERVATION_UPDATE_DURATION_DEFAULT { ​
 return;​
 }​
.....​
.....

While this interval might be reasonable for networks like Ethereum, which has block times of

approximately 12 seconds, it introduces essential limitations on Solana, which has block

times of approximately 400 milliseconds.

Due to the longer update interval:

-​ Rapid price changes within a 15-second period may go completely unnoticed by the

oracle.

-​ On Solana, where 15 seconds can span more than 30 blocks, sharp price movements

can occur and be entirely excluded from the TWAP calculations.

For example, in a volatile market scenario, if a token experiences a sharp price drop or spike

within a few seconds, this event will not be reflected in the TWAP. Instead, the TWAP will

inaccurately portray the market as stable, skewing averages and leading to incorrect pricing.

Impact:

Significant price changes within the 15-second interval are ignored, leading to delayed or

inaccurate TWAP calculations. The oracle may not reflect market conditions during critical

moments, creating discrepancies in price-sensitive operations.

Recommendation:

Reduce the OBSERVATION_UPDATE_DURATION_DEFAULT to around 5 seconds to align

better with Solana’s block time and capture more granular price data.

11

[MAGE-03] Inconsistent or Incomplete Access

Control Between Admin and Owner in

Fee Collection Instructions

Low

Details:

The fee collection instructions collect_fund_fee and collect_protocol_fee both contain

outdated or unimplemented access control logic, as indicated by commented-out code

and TODO-style comments in NatSpec:

In collect_fund_fee:

/// Only admin or fund_owner can collect fee now​

// #[account(constraint = (owner.key() == amm_config.fund_owner ||

owner.key() == crate::admin::id()) @ ErrorCode::InvalidOwner)]​

#[account(constraint = (owner.key() == crate::admin::id()) @

ErrorCode::InvalidOwner)]

In collect_protocol_fee:

/// Only admin or owner can collect fee now​

// #[account(constraint = (owner.key() == amm_config.protocol_owner ||

owner.key() == crate::admin::id()) @ ErrorCode::InvalidOwner)]​

#[account(constraint = (owner.key() == crate::admin::id()) @

ErrorCode::InvalidOwner)]

Currently, both instructions only allow the hardcoded admin to collect fees. However, the

presence of comments and unused access paths referencing fund_owner and

protocol_owner suggests that the protocol intends to support decentralized or delegated

control, but it is not yet implemented.

12

Impact:

The severity of this issue is Low/Info.

-​ The presence of unused or outdated comments/code may confuse integrators or

future contributors.

-​ Current setup allows only the admin to collect fees, which centralizes control and

may violate decentralization or DAO expectations.

Recommendation:

You have two options:

-​ Implement the Intended Access Control

-​ Remove Inaccurate Comments and Dead Code

[MAGE-04] Missing Validation for Fee Parameters

in update_amm_config

Low

Details:

The update_amm_config instruction allows updating fee-related fields in the AmmConfig

account using a param-based switch. Specifically, the instruction permits direct

assignment of values to the following fields without validating that they are within

acceptable bounds:

Some(3) => amm_config.protocol_fee = value,​
Some(4) => amm_config.creator_fee = value,

All of these parameters are expected to be basis-point-style values where the denominator

is FEE_RATE_DENOMINATOR_VALUE = 1_000_000 (i.e., representing 100%). However, no

require! checks are performed to ensure that the provided value is less than or equal to this

denominator.

13

Additionally, no checks are in place to ensure that the sum of all fee rates does not exceed

the denominator, which could result in invalid fee splits or arithmetic underflows elsewhere

in the protocol.

Impact:

Setting a fee rate above 1_000_000 (e.g., 1_500_000) can cause:

-​ Swap and deposit operations to revert or panic due to underflows or invalid math

(especially in fee split calculations).

-​ Protocol or fund revenue loss due to incorrect fee allocation.

-​ Denial of service on the pool if the fee math fails consistently due to bad config.

Recommendation:

Add require! checks to enforce per-parameter upper bounds:

require!(value <= FEE_RATE_DENOMINATOR_VALUE, ErrorCode::FeeTooHigh);

[MAGE-05] Dangerous NatSpec Documentation

in update_amm_config

Low

Details:

The update_amm_config instruction is documented with NatSpec-style comments that do

not reflect the actual logic implemented in the underlying instruction (update_config.rs).

Specifically, the documented meanings of the param argument are incorrect or outdated:

Current NatSpec claims:

/// * `param` - The value can be 0 | 1 | 2 | 3 | 4, otherwise will report a

error​

14

/// * `trade_fee_rate` - The new trade fee rate of amm config, be set when

`param` is 0​
/// * `protocol_fee_rate` - ..., when `param` is 1​
/// * `fund_fee_rate` - ..., when `param` is 2​
/// * `new_owner` - when `param` is 3​
/// * `new_fund_owner` - when `param` is 4

But this is the actual implementation:

pub fn update_amm_config(ctx: Context<UpdateAmmConfig>, param: u8, value:

u64) -> Result<()> { ​

 let amm_config = &mut ctx.accounts.amm_config;​

 let match_param = Some(param);​

 match match_param {​

 Some(0) => {​

 let new_fund_owner =

*ctx.remaining_accounts.iter().next().unwrap().key;​

 set_new_fund_owner(amm_config, new_fund_owner)?;​

 }​

 Some(1) => amm_config.token_1_lp_rate = value,​

 Some(2) => amm_config.token_0_lp_rate = value,​

 Some(3) => amm_config.protocol_fee = value,​

 Some(4) => amm_config.creator_fee = value,​

 Some(5) => amm_config.disable_create_pool = if value == 0 { false }

else { true },​

 _ => return err!(ErrorCode::InvalidInput),​

 }​

 Ok(())​

}

There is no logic for setting trade_fee_rate, new_owner, or protocol_owner, which are

referenced in the comments.

15

In addition, for example, it states that 0 sets trade_fee_rate but actually sets

new_fund_owner.

Impact:

The protocol may pass wrong param values and unintentionally mutate incorrect

configuration fields.

Recommendation:

Update the NatSpec documentation to match the actual logic in update_amm_config.

[MAGE-06] The close function does not have any

restrictions in place

Low

Details:
With the current implementation of the close function, no type is being enforced on the

account_to_close parameter:

 /// CHECK: The account to close​
 #[account(mut)]​
 pub account_to_close: UncheckedAccount<'info>,

However, this can prove to be problematic in some scenarios. For example, if we close a PDA

for a given pool without first emptying its token vaults, the token balances of that pool will

be lost forever.

Impact:

In certain scenarios funds might become stuck in the protocol.

16

Recommendation:

Consider adding additional validation logic to the close function or limiting its functionality

to only certain types of PDAs.

[MAGE-07] Unused function level variables Informational

Details:

The following function level variables are not being used and can safely be removed:

withdraw.rs#L125

 let user = ctx.accounts.user.key();

withdraw.rs#L146-L151

 // if user is just inititalizing​
 let user_last_slot = if user_state.last_snap_slot == 0 {​
 current_snap_slot​
 } else {​
 user_state.last_snap_slot​
 };

deposit.rs#L117

 let user = ctx.accounts.user.key();

deposit.rs#L128-L133

 // if user is just inititalizing​
 let user_last_slot = if user_state.last_snap_slot == 0 {​
 current_snap_slot​
 } else {​
 user_state.last_snap_slot​
 };

17

Recommendation:

Remove the unused variables.

[MAGE-08] The Fees::trading_fee function is not

being used anywhere

Informational

Details:

The Fees::trading_fee function is not being anywhere within the codebase as of its current

state. This means that it can safely be removed.

Recommendation:

Consider removing the Fees::trading_fee function.

[MAGE-09] Typos Informational

Details:

During our audit of the codebase, we came across some typos in the code comments, that

are worth mentioning:

deposit.rs#L45

tokan → token

/// user lp tokan account #[account(mut, token::authority = user)]​
 pub user_lp_token: Box<InterfaceAccount<'info, TokenAccount>>,

18

initialize.rs#L75

must smaller than → must be smaller than

 /// Token_0 mint, the key must smaller then token_1 mint.​
 #[account(​
 constraint = token_0_mint.key() < token_1_mint.key(),​
 mint::token_program = token_0_program,​
)]​
 pub token_0_mint: Box<InterfaceAccount<'info, Mint>>,

Recommendation:

Fix the above mentioned typos.

[MAGE-10] Redundant functions Informational

Details:

The current implementations of both the Fees::fund_fee and Fees::protocol_fee functions

hold the exact same functionality as one another. This is redundant and can be avoided by

creating a function with a more generalized name that is going to be used in the place of

those two.

 /// Calculate the owner trading fee in trading tokens​
 pub fn protocol_fee(amount: u128, protocol_fee_rate: u64) ->

Option<u128> {​
 floor_div(​
 amount,​
 u128::from(protocol_fee_rate),​
 u128::from(FEE_RATE_DENOMINATOR_VALUE),​
)​
 }​
​
 /// Calculate the owner trading fee in trading tokens​

19

 pub fn fund_fee(amount: u128, fund_fee_rate: u64) -> Option<u128> {​
 floor_div(​
 amount,​
 u128::from(fund_fee_rate),​
 u128::from(FEE_RATE_DENOMINATOR_VALUE),​
)​
 }

Recommendation:

Consider creating a function with a more generalized name with the same functionality as

Fees::fund_fee and Fees::protocol_fee, and use it in the places where those two are

currently being used.

20

Overall Assessment
After a detailed and thorough security review, our researchers did not identify any

vulnerabilities of critical or high severity.

MageLabs DEX is, to the best of our knowledge, safe to use.

Severity Count Acknowledged

Critical 0 -

High 0 -

Medium 2 TBD

Low 4 TBD

Informational 4 TBD

21

Recommendations

Audita Security has put forward the following recommendations for MageLabs DEX:

●​ Increase OBSERVATION_NUM to 150–200, allowing the system to retain a broader

historical window without overwriting data too quickly.

●​ Reduce the OBSERVATION_UPDATE_DURATION_DEFAULT to around 5 seconds to

align better with Solana’s block time and capture more granular price data.

●​ Fix incomplete access control between admin and owner by either:

○​ Implementing the intended access control, or

○​ Removing inaccurate comments and dead code

●​ Add require! checks to enforce per-parameter upper bounds:

require!(value <= FEE_RATE_DENOMINATOR_VALUE, ErrorCode::FeeTooHigh);

●​ Update the NatSpec documentation to match the actual logic in

update_amm_config.

●​ Remove unused variables.

●​ Consider removing the Fees::trading_fee function.

●​ Fix the mentioned typos.

●​ Consider creating a function with a more generalized name with the same

functionality as Fees::fund_fee and Fees::protocol_fee, and use it in the places

where those two are currently being used.

22

Fixes
MageLabs DEX’ team is dedicated and responsive, cooperating to acknowledge and

implement the above recommendations.

Information on implemented fixes and acknowledged issues will be included here in the

Final Audit Report deliverable (D2).

Disclaimer

This audit makes no statements or warranties on the security of the code. While we have

conducted the analysis to our best abilities and produced this report in line with latest

industry developments, it is important to not rely on this report only. In order for contracts

to be considered as safe as possible, the industry standard requires them to be checked by

several independent auditing bodies. Those can be other audit firms or public bounty

programs.

Smart contract platforms, their programming languages, and other software components

are not immune to vulnerabilities that can be exploited by hackers. As a result, although a

smart contract audit can help identify potential security issues, it cannot provide an

absolute guarantee of the audited smart contract's security.

23

	Document
	Executive Summary
	Audita Vulnerability Classifications
	
	Scope
	Findings
	Summary
	
	Detailed Findings
	
	
	
	

	
	Recommendations
	Fixes

